
FFT-Based Ridgelets For Radiative
Transport

Bachelor Thesis by Simon Etter

Advisor: Axel Obermeier

Supervisor: Prof. Dr. Philipp Grohs

25 September 2013

ETH Zürich

Contents

1 Introduction 3
1.1 Radiative Transport Equation . 3
1.2 Ridgelets . 3

2 Preliminaries 5
2.1 Discrete intervals . 5
2.2 Sobolev spaces . 5
2.3 Fourier Transform . 5
2.4 Finite Fourier Transform . 9

3 Ridgelets 14
3.1 Construction . 14
3.2 Ridgelet Transform . 19
3.3 Finite Ridgelet Transform . 21

4 Intermezzo: Scalar Products 31
4.1 Definitions . 31
4.2 Relations . 31

5 Radiative Transport Equation 34
5.1 Basic RTE Solver . 34
5.2 Convergence Of Basic RTE Solver . 37
5.3 Discrete Ordinates Method . 40
5.4 Sparse Discrete Ordinates Method . 41
5.5 Source Iterations . 44

6 Numerical Experiments 45
6.1 Convergence Of CG . 45
6.2 Convergence Of Basic RTE Solver . 49
6.3 General Dirichlet Boundary Conditions 49
6.4 Convergence Of SDOM Compared To DOM 55
6.5 Source Iterations . 55

7 Conclusion 62

2

1 Introduction

1.1 Radiative Transport Equation

The radiative transport equation (RTE)

s · ∇u+ κu = f +

∫
S1

σu ds′

is a steady state continuity equation describing the conservation of radiative intensity
in an absorbing, emitting and scattering medium. Let us assume that the following
quantities are known at all locations (x, y) ∈ Ω := [0, Lx)× [0, Ly) and for all directions
s ∈ S1 := {s ∈ R2 | ‖s‖2 = 1}:

• absorption coefficient κ (x, y, s) ∈ R

• source term f (x, y, s) ∈ R

• scattering kernel σ (x, y, s, s′) ∈ R

Then, the above equation allows us to find the unknown radiative intensity u as a
function Ω× S1 → R, which is the problem at the heart of this bachelor thesis.

Although the RTE looks simple, standard numerical techniques for solving it do not
perform well for two reasons:

• The transport term s · ∇u leads to ill-conditioned systems of equations.

• With the dimension of the domain of u being 3 in 2-dimensional physical space
and 5 in 3-dimensional space, the problem is fairly high-dimensional.

Both of these points make the accurate numerical solution of the RTE very costly or
even impossible due to memory and compute power limitations of today’s hardware.
But there is hope that they can be mitigated by discretizing the RTE with a novel class
of basis functions called ridgelets. This bachelor thesis investigates the benefits and
drawbacks that come along with such an approach.

1.2 Ridgelets

At the most superficial level, a ridgelet is a function which “looks like a ridge”, i.e. a
function which is located along a line orthogonal to which it oscillates heavily and along
which it varies only little (see Figure 1.1a for an example). Obviously, if we have several
such ridgelets with varying locations, directions and widths, we can nicely represent

3

(a) An example ridgelet in real space
(Green denotes 0)

(b) A similar ridgelet in Fourier space
(Blue denotes 0)

Figure 1.1

a function whose features are located along curves by a linear combination of some
(possibly few!) of them. Solutions of the RTE typically fall into this category of nicely
representable functions as the variations along the transport direction are smoothed out
while the ones orthogonal to it are not.

For the purpose of this bachelor thesis, this real space characterization of ridgelets is
useful for getting an intuition on why ridgelets are well suited for a discretization of the
RTE. If one wants to do some real work with these functions, however, a characterization
in Fourier space comes in handier: In Fourier space, a ridgelet is located at some line
along which it has a length of O(2j) while orthogonal to it its width is bounded by some
constant independent of j (see Figure 1.1b). To any reader familiar with the notion of the
Fourier transform it should be obvious that the real and Fourier space characterizations
are roughly equivalent and that the two lines along which the ridgelet is located in real
and Fourier space respectively are orthogonal to each other. In order to have efficient
methods that express a given function as a linear combinations of ridgelets, and that
transform these coefficients back to the original function, some more assumptions on the
Fourier space support of the ridgelets have to be made, but these will be developed in a
later chapter.

As was already hinted at, one advantage of the ridgelets is that solutions of the
RTE typically can be well approximated by a linear combination of only few ridgelets.
Therefore, ridgelets can alleviate the memory and also the compute power problems
which are caused by the high dimensionality of the RTE. The other advantage is that
there exists a preconditioner for the linear system of equations that arises from a ridgelet
discretization of the RTE that has been proven [1] to bound the condition number by
some constant independent of the number of ridgelets that are used for discretization.
In combination, these two points thus make ridgelets the perfect candidates for the
discretization of the RTE.

4

2 Preliminaries

2.1 Discrete intervals

Throughout this document, we will be working with functions sampled on equispaced
grids over an interval. Therefore, it is useful to have some notation at hand to easily
specify such a grid which we named a discrete interval.

Definition 2.1.1 (Discrete intervals). Let a, b, c ∈ R and a < c, c−ab ∈ Z≥0. Then,

[a : b : c] := {a, a+ b, ..., c− b, c}

If b is omitted, then b = 1 is meant. Both the opening and the closing square brackets
can be replaced by parentheses and if done so, the last point at the respective end is
excluded from the set.

Example 2.1.2. [0 : 0.5 : 2] = {0, 0.5, 1, 1.5, 2}, whereas [0 : 0.5 : 2) = {0, 0.5, 1, 1.5}

2.2 Sobolev spaces

Sobolev spaces are an important tool to measure the smoothness of a function. For our
purposes, we will need a definition which is slightly different from the one usually given.

Definition 2.2.1 ((Periodic) Sobolev spaces). Let k ∈ Z>0, Lx, Ly ∈ R>0 and Ω =
[0, Lx)× [0, Ly) some rectangular domain. Then, the Sobolev space Hk is defined as

Hk :=

{
f ∈ V |

∫
Ω

∂kx+kyf

∂kxx∂kyy
dx dy <∞ ∀kx, ky ∈ Z≥0, kx, ky ≤ k

}
where V is the space of periodic functions Ω→ C.

We differ from the usual definition in that kx, ky run over kx, ky ≤ k instead of kx+ky ≤
k. Also, for convenience we implemented the condition that our functions be periodic
directly into the definition of the Sobolev spaces.

2.3 Fourier Transform

Although we expect the reader of this document to be familiar with the notion of the
Fourier transform and its basic properties, we will nevertheless repeat them here. The
reason for this is that there are at least three different variants which all go by the name
of “Fourier transform”, and each of these variants has still some subvariants depending

5

on the sign of the exponent and where the normalizing prefactor goes. This multitude
of Fourier transforms often leads to confusion and even errors once results from different
conventions are combined. Therefore, the objective of this and the next section is to
precisely define the two conventions used in this report and prove that some results
known from general Fourier theory still hold in these specific conventions.

Definition 2.3.1 (Fourier transform). Let Lx, Ly ∈ R>0, Ω = [0, Lx) × [0, Ly) some
rectangular domain and f : Ω→ C a function. Then, the function F [f] : Z2 → C given
by

F [f](x̂, ŷ) =
1

LxLy

∫
Ω
f(x, y) e

−2πi (x̂ x
Lx

+ŷ y
Ly

)
dx dy

is called the Fourier transform of f .

Definition 2.3.2 (Inverse Fourier transform). Let Lx, Ly and Ω be as above and f̂ :

Z2 → C a function. Then, the function F−1[f̂] : Ω→ C given by

F−1[f̂](x, y) =
∑

(x̂,ŷ)∈Z2

f̂(x̂, ŷ) e
2πi (x̂ x

Lx
+ŷ y

Ly
)

is called the inverse Fourier transform of f̂ .

Note that F−1[f̂](x, y) is actually defined for all (x, y) ∈ R2 and that F−1[f̂](x −
nxLx, y − nyLy) = F−1[f̂](x, y) holds for all (nx, ny) ∈ Z2. Therefore, the natural

domain of definition of F−1[f̂] would be the periodic extension of Ω to the whole R2.
When we later deal with translations of real space functions, we will have to assume
this point of view for all real space functions f : Ω → C as otherwise an expression of
the form f(x − tx, y − ty) might not be defined because (x − tx, y − ty) lies outside of
Ω. However, it would be too tedious to keep repeating that point whenever the need
arises, thus in future we will just tacitly assume that whenever a function f is defined
as f : Ω→ C, its actual domain of definition is the periodic extension of Ω to the whole
R2.

Although important, the following point is somewhat technical and we assume it to
be generally known. Therefore, we present it simply as a fact without any proof or
reference.

Fact 2.3.3. The Fourier transform and inverse Fourier transform are (essentially) bi-
jective.

The “essentially” has to be added because the correctness of the above statement
depends of course on what function spaces you choose as the domains and ranges of the
Fourier transforms. There are some theoretical issues to be considered when choosing
these spaces (see e.g. [4, Satz V.2.8] where the above fact is proven for the case of
Ω = R2), but these theoretical subtleties are of little concern in practice. For the purpose
of this report, it is thus good enough to assume that the above fact simply holds for all
“reasonable” functions, i.e. functions that appear in a physics related context.

Let us now show that the usage of “inverse” in the Fourier transforms is really justified.

6

Theorem 2.3.4 (Inverse property of Fourier transforms). (Under some weak condi-
tions,) the Fourier transform and inverse Fourier transform are inverse to each other,
i.e. F ◦ F−1 = F−1 ◦ F = I.

Proof. Let Lx, Ly,Ω and f̂ be as above. Then,

F [F−1[f̂]](x̂, ŷ) =
1

LxLy

∫
Ω

 ∑
(v̂,ŵ)∈Z2

f̂(v̂, ŵ) e
2πi (v̂ x

Lx
+ŵ y

Ly
)

 e
−2πi (x̂ x

Lx
+ŷ y

Ly
)
dx dy

=
∑

(v̂,ŵ)∈Z2

f̂(v̂, ŵ)
1

LxLy

∫
Ω
e

2πi ((v̂−x̂) x
Lx

+(ŵ−ŷ) y
Ly

)
dx dy

=
∑

(v̂,ŵ)∈Z2

f̂(v̂, ŵ) δ(v̂ − x̂) δ(ŵ − ŷ)

= f̂(x̂, ŷ)

where in the second line we have assumed that the integral and the series commute.
The other direction, i.e. F−1 ◦ F = I, follows by 2.3.3.

We conclude this section with three basic results which will be used later.

Theorem 2.3.5 (Fourier transform of translation). Let Lx, Ly,Ω be as above and f :
Ω→ C a function with periodic continuation to R2. Then, we have

F [f(· − tx, · − ty)](x̂, ŷ) = e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)F [f](x̂, ŷ)

Proof.

F [f(· − tx, · − ty)](x̂, ŷ) =
1

LxLy

∫
Ω
f(x− tx, y − ty)e−2πi (x̂ x

Lx
+ŷ y

Ly
)
dx dy

=
1

LxLy

∫
Ω
f(x, y)e

−2πi (x̂x+tx
Lx

+ŷ y+tx
Ly

)
dx dy

= e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)F [f](x̂, ŷ)

Theorem 2.3.6 (Plancherel formula). Let Lx, Ly,Ω be as above and f, g : Ω → C.
Then, we have∫

Ω
f(x, y) g(x, y) dx dy = LxLy

∑
(x̂,ŷ)∈Z2

F [f](x̂, ŷ)F [g](x̂, ŷ)

7

Proof.∫
Ω
f(x, y) g(x, y) dx dy =

∫
Ω
F−1[F [f]](x, y)F−1[F [g]](x, y) dx dy

=

∫
Ω

 ∑
(x̂,ŷ)∈Z2

F [f](x̂, ŷ) e
2πi (x̂ x

Lx
+ŷ y

Ly
)

 . . .

 ∑
(v̂,ŵ)∈Z2

F [g](v̂, ŵ) e
−2πi (v̂ x

Lx
+ŵ y

Ly
)

 dx dy

=
∑

(x̂,ŷ)∈Z2

∑
(v̂,ŵ)∈Z2

F [f](x̂, ŷ)F [g](v̂, ŵ)

∫
Ω
e

2πi ((x̂−v̂) x
Lx

+(ŷ−ŵ) y
Ly

)

= LxLy
∑

(x̂,ŷ)∈Z2

F [f](x̂, ŷ)F [g](x̂, ŷ)

Again, we have assumed that the integral and the series commute.

Theorem 2.3.7 (Decay of Fourier coefficients). Let Lx, Ly ∈ R>0 and f : [0, Lx) ×
[0, Ly)→ C in the Sobolev space Hk, k ≥ 1. Then,

F [f](x̂, ŷ) = O

(
1

x̂kŷk

)
for x̂, ŷ →∞

Proof. By partial integration of the integral over x, we get

F [f](x̂, ŷ) =
1

LxLy

∫ Ly

0

∫ Lx

0
f(x, y)︸ ︷︷ ︸
↓

e
−2πi (x̂ x

Lx
+ŷ y

Ly
)︸ ︷︷ ︸

↑

dx dy

=
1

LxLy

∫ Ly

0

f(x, y)
−Lx
2πix̂

e
−2πi (x̂ x

Lx
+ŷ y

Ly
)
∣∣∣∣Lx
0︸ ︷︷ ︸

=0

. . .

−
∫ Lx

0

∂f

∂x
(x, y)

−Lx
2πix̂

e
−2πi (x̂ x

Lx
+ŷ y

Ly
)
dx

 dy

=
1

Ly

1

2πix̂

∫ Ly

0

∫ Lx

0

∂f

∂x
(x, y)e

−2πi (x̂ x
Lx

+ŷ y
Ly

)
dx dy

The underbrace vanishes because the two terms for x = 0 and x = Lx are equal as f is
assumed to be periodic. By doing the same steps also for y, we get

F [f](x̂, ŷ) =
1

2πix̂

1

2πiŷ

∫ Ly

0

∫ Lx

0

∂2f

∂x∂y
(x, y)e

−2πi (x̂ x
Lx

+ŷ y
Ly

)
dx dy

8

Since f ∈ Hk, k ≥ 1, the integrals are bounded, thus

F [f](x̂, ŷ) = O

(
1

x̂ŷ

)
If k > 1, then ∂2f

∂x∂y ∈ Hk−1, thus we can repeat the above steps and eventually get

F [f](x̂, ŷ) = O

(
1

x̂kŷk

)

2.4 Finite Fourier Transform

While the above definition of the Fourier transform provides a solid basis for theoretical
work, it is useless if one wants to use it on a finite computing machine because of the
integrals and the series. Therefore, what is needed is a finitely computable approximation
to the ideal Fourier transform.

Definition 2.4.1 (Finite Fourier transform). Let Lx, Ly ∈ R>0, Nx, Ny ∈ Z≥N ,

ΩF =

[
0 :

Lx
Nx

: Lx

)
×
[
0 :

Ly
Ny

: Ly

)
an equispaced rectangular grid,

Ω̂F =

[
−dNx − 1

2
e : bNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

a part of the Fourier space and f : ΩF → C a function. Then, the function ft[f] : Ω̂F →
C given by

ft[f](x̂, ŷ) =
1

NxNy

∑
(x,y)∈ΩF

f(x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

is called the finite Fourier transform of f .

It is worth noting that ft corresponds to a trapezoidal rule approximation of the
integral in the definition of F .

Definition 2.4.2 (Inverse finite Fourier transform). Let Lx, Ly, Nx, Ny, ΩF and Ω̂F as

above and f̂ : Ω̂F → C a function. Then, the function ift[f̂] : ΩF → C given by

ift[f̂](x, y) =
∑

(x̂,ŷ)∈Ω̂F

f̂(x̂, ŷ) e
2πi (x̂ x

Lx
+ŷ y

Ly
)

is called the inverse finite Fourier transform of f̂ .

9

Instead of restricting ift[f̂] to ΩF , the above formula would also allow to define ift[f̂]
as a function [0, Lx)× [0, Ly)→ C. In that case, we would have

ift[f̂](x, y) = F−1[Z[f̂]] ∀(x, y) ∈ [0, Lx)× [0, Ly)

where Z is defined as follows.

Definition 2.4.3 (Zero padding operator). Let Ω̂F and f̂ be as in Definition 2.4.2.
Then, Z[f̂] : Z2 → C is a function defined by

Z[f̂](x̂, ŷ) =

{
f̂(x̂, ŷ) (x̂, ŷ) ∈ Ω̂F

0 otherwise

and the symbol Z is called the zero padding operator.

Later on, we will also need an operator undoing the effect of Z, which for symmetry
we introduce already here.

Definition 2.4.4 (Cutting operator). Let Ω̂F be as in Definition 2.4.2, and f̂ : Z2 → C.
Then, C[f̂] : Ω̂F → C is a function defined by

C[f̂](x̂, ŷ) = f̂(x̂, ŷ)

and the symbol C is called the cutting operator.

The advantage of defining ift the way we did is that only in this case the transform
is truly finitely computable and all of the later statements about properties of the finite
Fourier transforms are correct. On the other hand, for the purpose of error estimation it
will be useful to assume the “continuous” (meaning defined on a non-discrete set) view
on the ift.

Having defined the finite Fourier transforms, we need to check again that the usage of
“inverse” in the inverse finite Fourier transform is really justified.

Theorem 2.4.5 (Inverse property of finite Fourier transforms). The finite Fourier trans-
form and inverse finite Fourier transform are inverse to each other, i.e. ft ◦ ift =
ift ◦ ft = I.

Proof. Let Lx, Ly, Nx, Ny, ΩF , Ω̂F and f̂ as above. Then,

ft[ift[f̂]](x̂, ŷ) =
1

NxNy

∑
(x,y)∈ΩF

 ∑
(v̂,ŵ)∈Ω̂F

f̂(v̂, ŵ) e
2πi (v̂ x

Lx
+ŵ y

Ly
)

 e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
∑

(v̂,ŵ)∈Ω̂F

f̂(v̂, ŵ)
1

NxNy

∑
(x,y)∈ΩF

e
2πi ((v̂−x̂) x

Lx
+(ŵ−x̂) y

Ly
)

=
∑

(v̂,ŵ)∈Ω̂F

f̂(v̂, ŵ) δ(v̂ − x̂) δ(ŵ − ŷ)

= f̂(x̂, ŷ)

10

The fact that the sums 1
NxNy

∑
(x,y)∈ΩF

e
2πi ((v̂−x̂) x

Lx
+(ŵ−x̂) y

Ly
)

collapse to delta functions is

a consequence of the summation property of the root of unity:

N−1∑
k=0

e2πi a k
N = N δ(a mod N), ∀a ∈ Z

The other direction, i.e. ift ◦ ft = I, can be proven in exactly the same way.

Since the purpose of the finite Fourier transforms is to provide finitely computable
approximations to the ideal Fourier transform, it is well worth taking a look at their
computational complexity as well as at their approximation properties.

Theorem 2.4.6 (Complexity of ft / ift). Both the finite Fourier transform as well
as the inverse finite Fourier transform can be evaluated in all NxNy points at once in
O(NxNylog(NxNy)).

Proof. We show how the ft can be expressed in terms of a discrete Fourier transform
whose complexity is known to be O(NxNy log(NxNy)). The same argument can be easily
applied to the ift as well.

ft[f](x̂, ŷ) =
1

NxNy

∑
(x,y)∈ΩF

f(x, y)e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
1

NxNy

Nx−1∑
kx=0

Ny−1∑
ky=0

f

(
Lx

kx
Nx

, Ly
ky
Ny

)
e
−2πi (x̂ kx

Nx
+ŷ

ky
Ny

)

=
1

NxNy

Nx−1∑
kx=0

Ny−1∑
ky=0

Fkx,ky e
−2πi (x̂kx

Nx
+
ŷky
Ny

)

=
1

NxNy
DFT[F]

where Fkx,ky := f
(
Lx

kx
Nx
, Ly

ky
Ny

)
.

The error introduced by the finite Fourier transforms can be split into two parts: One
accounts for the fact that we replace the infinite Fourier space Z2 by some finite subset
thereof and will be called the truncation error. The other error is introduced by the
fact that we replace the integrals in the ideal Fourier transform by quadrature with the
trapezoidal rule, and accordingly we named it the quadrature error.

Theorem 2.4.7 (Convergence of truncation error). Let N ∈ Z>0, Lx, Ly ∈ R>0 and
f : [0, Lx)× [0, Ly)→ C in the Sobolev space Hk, k > 1. Then,∑

(x̂,ŷ)∈Z2\[−N :N]2

|F [f](x̂, ŷ)|2 = O
(
N−(2k−1−ε)

)
for any ε ∈ (0, 2k − 1).

11

Proof. Using the decay property 2.3.7 of the Fourier coefficients, we get∑
(x̂,ŷ)∈Z2\[−N :N]2

|F [f](x̂, ŷ)|2 =
∑

(x̂,ŷ)∈Z2\[−N :N]2

O

(
1

x̂2kŷ2k

)

= O

 ∞∑
x̂=N+1

∞∑
ŷ=1

1

x̂2kŷ2k

= O

(∞∑
x̂=N+1

1

x̂2k

)

The sum over ŷ can be dropped because
∞∑̂
y=1

1
ŷ2k with k > 1

2 is an over-harmonic series

and therefore convergent. Choosing some arbitrary ε ∈ (0, 2k − 1), we further get

∑
(x̂,ŷ)∈Z2\[−N :N]2

|F [f](x̂, ŷ)|2 = O

 1

N2k−1−ε

∞∑
x̂=N+1

N2k−1−ε

x̂2k−1−ε︸ ︷︷ ︸
<1

1

x̂1+ε

= O

(
1

N2k−1−ε

∞∑
x̂=N+1

1

x̂1+ε

)

= O

(
1

N2k−1−ε

)
In the last line, we made again use of the fact that the over-harmonic series are conver-
gent.

Lemma 2.4.8 (Convergence of trapezoidal rule). Let Lx, Ly ∈ R>0, N ∈ Z>0, ΩF :=

[0 : LxN : Lx)× [0 :
Ly
N : Ly), f : [0, Lx)× [0, Ly)→ C in the Sobolev space Hk, k > 1 and

T [f] :=
LxLy
N2

∑
(x,y)∈ΩF

f (x, y)

the Lx, Ly-periodic trapezoidal rule quadrature operator. Then,

T [f]−
∫ Lx

0

∫ Ly

0
f(x, y) dy dx = O

(
1

Nk

)
Proof. From the definition of F , we get∫ Lx

0

∫ Ly

0
f(x, y) dy dx = LxLyF [f](0, 0)

12

On the other hand, inserting f = F−1 [F [f]] into the definition of T , we get

T [f] =
LxLy
NxNy

∑
(x,y)∈ΩF

∑
(x̂,ŷ)∈Z2

F [f](x̂, ŷ)e
2πi (x̂ x

Lx
+ŷ y

Ly
)

= LxLy
∑

(x̂,ŷ)∈Z2

F [f](x̂, ŷ) δ (x̂ mod N) δ (ŷ mod N)

= LxLy
∑

(x̂,ŷ)∈Z2

F [f](Nx̂,Nŷ)

The error is thus

T [f]−
∫ Lx

0

∫ Ly

0
f(x, y) dy dx = LxLy

 ∑
(x̂,ŷ)∈Z2

F [f](Nx̂,Nŷ)−F [f](0, 0)

Combining this result with the decay property 2.3.7 of the Fourier coefficients, the esti-
mate immediately follows.

The key ideas of this proof were taken from [7, Section 3].

Theorem 2.4.9 (Convergence of quadrature error). Let N ∈ Z>0, Lx, Ly ∈ R>0 and
f : [0, Lx)× [0, Ly)→ C in the Sobolev space Hk, k > 1. Furthermore, let the number of
finite Fourier transform grid points be Nx = Ny = N . Then,∑

(x̂,ŷ)∈[−N :N]2

|F [f](x̂, ŷ)− ft[f](x̂, ŷ)|2 = O
(
N−2(k−1)

)
Proof. By the above Lemma 2.4.8, we get

∑
(x̂,ŷ)∈[−N :N]2

|F [f](x̂, ŷ)− ft[f](x̂, ŷ)|2 =
∑

(x̂,ŷ)∈[−N :N]2

O

(
1

Nk

)2

= O

(
1

N2(k−1)

)

13

3 Ridgelets

In the introduction, a vague idea was given of what ridgelets are and what they can be
used for. In this chapter, we will further clarify these concepts by explicitly constructing
a set of ridgelets. Furthermore, we will show that any function can be expressed as
a linear combination of these ridgelets without loss of information. Finally, efficient
methods will be presented which allow to switch from an explicit representation of a
function to its representation as a linear combination of ridgelets and vice versa.

Many ideas in this chapter are taken from [2] and [1].

3.1 Construction

Our construction of the ridgelets is parametrized by two functions ψRadial and ψSpherical
which are introduced in the following two definitions.

Definition 3.1.1 (Radial shape and helper functions). Let ψRadial : [0, 1]→ [0, 1] be a
function called radial shape function. Then, we define the radial helper function R(x) as

R(x) :=

0 |x| ≤ 0.5

ψRadial(2x− 1) 0.5 < |x| < 1

1 |x| = 1√
1− ψRadial(x− 1)2 1 < |x| < 2

0 2 ≤ |x|
Definition 3.1.2 (Spherical shape and helper functions). Let ψSpherical : [0, 1] → [0, 1]
be a function called spherical shape function. Then, we define the spherical helper func-
tion Φ(x) as

Φ(x) :=

0 x ≤ −1√
1− ψSpherical(x+ 1)2 −1 < x < 0

1 x = 0

ψSpherical(x) 0 < x < 1

0 1 ≤ x
Although not strictly necessary for the results shown here, the helper functions are

usually chosen as continuous and monotonous functions with

ψRadial(0) = 0, ψRadial(1) = 1

ψSpherical(0) = 1, ψSpherical(1) = 0

With these helper functions at hand, we can start defining our ridgelets.

14

Definition 3.1.3 (Basic ridgelet). Let ρx, ρy ∈ Z≥1 and Ω = [0, Lx) × [0, Ly) some

rectangular domain. Then, the basic ridgelet ψ̂(1,x,0) : Z2 → [0, 1] is a function defined
in Fourier space by

ψ̂(1,x,0)(x̂, ŷ) := R

(
x̂

2ρx

)
Φ

(
ρxŷ

ρyx̂

)
with corresponding real space function ψ(1,x,0) : Ω→ C given by

ψ(1,x,0) := F−1[ψ̂(1,x,0)]

Definition 3.1.4 (x-cone ridgelets). Let Ω be as above. Then, the x-cone ridgelets are
a family of functions ψ̂(j,x,k) : Z2 → [0, 1] parametrized by j ∈ Z≥1 and k ∈ [−2j−1 + 1 :
2j−1 − 1] defined in Fourier space by

ψ̂(j,x,k)(x̂, ŷ) := ψ̂(1,x,0)

(
x̂

2j−1
, ŷ − k

2j−1
x̂

)
,

and with corresponding real space functions ψ(j,x,k) : Ω→ C given by

ψ(j,x,k) := F−1[ψ̂(j,x,k)]

Note that the x-cone ridgelets correspond to a scaling (in x-direction) with subsequent
shearing (in y-direction) of the basic ridgelet. Since we want our ridgelets to cover all
directions, we also need some y-cone ridgelets which are defined as the transposed of the
x-cone ridgelets.

Definition 3.1.5 (y-cone ridgelets). The y-cone ridgelets are a family of functions
ψ̂(j,y,k) : Z2 → [0, 1] parametrized by j ∈ Z≥1 and k ∈ [−2j−1 + 1 : 2j−1 − 1] defined in
Fourier space by

ψ̂(j,y,k)(x̂, ŷ) := ψ̂(j,x,k)(ŷ, x̂),

and with corresponding real space functions ψ(j,y,k) : Ω→ C given by

ψ(j,y,k) := F−1[ψ̂(j,y,k)]

Finally, in order to have a “continuous” (in a non-mathematical sense) transition
between the x- and y-cone ridgelets, we define diagonal ridgelets as a patching of the
outermost ridgelets on the cones.

Definition 3.1.6 (Diagonal ridgelets). Let ρx, ρy and Ω be as above. Then, the diagonal

ridgelets are a family of functions ψ̂(j,d,k) : Z2 → [0, 1] parametrized by j ∈ Z≥1 and
k ∈ {−1, 1} defined in Fourier space by

ψ̂(j,d,k)(x̂, ŷ) :=

{
ψ̂(j,x,k 2j−1)(x̂, ŷ) |x̂|

ρx
≥ |ŷ|ρy

ψ̂(j,y,k 2j−1)(x̂, ŷ) |x̂|
ρx
< |ŷ|

ρy

and with corresponding real space functions ψ(j,d,k) : Ω→ C given by

ψ(j,d,k) := F−1[ψ̂(j,d,k)]

15

−4 −3 −2 −1 0 1 2 3 4
1

2ρx

−4

−3

−2

−1

0

1

2

3

4

1 2
ρ
y

(a) Scaling function ψ̂(0,s,0)

−4 −3 −2 −1 0 1 2 3 4
1

2ρx

−4

−3

−2

−1

0

1

2

3

4

1 2
ρ
y

(b) Basic ridgelet ψ̂(1,x,0)

−4 −3 −2 −1 0 1 2 3 4
1

2ρx

−4

−3

−2

−1

0

1

2

3

4

1 2ρ
y

(c) Diagonal ridgelet ψ̂(1,d,1)

−4 −3 −2 −1 0 1 2 3 4
1

2ρx

−4

−3

−2

−1

0

1

2

3

4

1 2ρ
y

(d) Diagonal ridgelet ψ̂(2,d,−1)

−4 −3 −2 −1 0 1 2 3 4
1

2ρx

−4

−3

−2

−1

0

1

2

3

4

1 2ρ
y

(e) x-cone ridgelet ψ̂(2,x,1)

−4 −3 −2 −1 0 1 2 3 4
1

2ρx

−4

−3

−2

−1

0

1

2

3

4

1 2ρ
y

(f) y-cone ridgelet ψ̂(2,y,1)

Figure 3.1: Fourier space supports of several ridgelets

16

(Actually, k 2j−1 lies outside the domain of the shear parameter k for κ ∈ {x, y}.
Reconsidering Definition 3.1.4 it is nevertheless clear what the meaning of ψ̂(j,κ,k 2j−1) is,
however.)

With the ridgelets defined so far, we cover all directions. However, we still need
some function that covers the low frequency part (which corresponds to the mass of the
function in real space).

Definition 3.1.7 (Scaling function). Given ρx, ρy and Ω as above, the scaling function

ψ̂(0,s,0) : Z2 → [0, 1] is a function defined in Fourier space by

ψ̂(0,s,0)(x̂, ŷ) :=

1 s < 1

2√
1− ψRadial(2s− 1)2 1

2 ≤ s < 1

0 1 ≤ s
with s := max

{ |x̂|
2ρx

,
|ŷ|
2ρy

}

with corresponding real space function ψ(0,s,0) : Ω→ C given by

ψ(0,s,0) := F−1[ψ̂(0,s,0)]

With the scaling function, the set of ridgelets is now complete. In the remainder of
this chapter, it will become clear that the most important property of a ridgelet is its
well-defined support in the Fourier space. Unfortunately, giving a lucid description of
what these supports look like in words or formulae is almost impossible. Therefore, we
rather refer the reader to the examples given in Figure 3.1, following the ancient wisdom
that at times, pictures can say more than a thousand words.

As the attentive reader noticed, the ridgelets are parametrized by a triple (j, κ, k)
of variables which tell us about the length and the direction of the respective ridgelet.
Often, however, we are not interested in such details and simply want to specify that
we mean all of the above defined ridgelets. For this purpose, the following set comes in
useful.

Definition 3.1.8 (Index set). The index set Λ is defined as the set of all triples

λ =

(j = 0, κ = s, k = 0)

(j ∈ Z≥1, κ ∈ {x, y}, k ∈ [−2j−1 + 1 : 2j−1 − 1])

(j ∈ Z≥1, κ = d, k ∈ {−1, 1})

j is called the scale parameter, κ the direction parameter and k the shear parameter.

The following lemma is a first example of the usefulness of having such a set Λ.

Lemma 3.1.9 (Partition of unity). The ψ̂λ with λ ∈ Λ constitute a partition of unity,
i.e. ∑

λ∈Λ

ψ̂2
λ(x̂, ŷ) = 1 ∀(x̂, ŷ) ∈ Z2

17

Proof. We will not give a complete proof here as doing so would be very tedious and
give little insight. Rather, we will settle for the main points.

First, note that Φ2(x) + Φ2(x− 1) = 1 for all x ∈ [0, 1]. Therefore, we have that e.g.

ψ̂2
(j,x,k)(x̂, ŷ) + ψ̂2

(j,x,k+1)(x̂, ŷ) = R2

(|x̂|
ρx2j

)
for all (x̂, ŷ) ∈ supp ψ̂(j,x,k) ∩ supp ψ̂(j,x,k+1). If we extend this argument to all ridgelets
on the same scale j, we see that the dependence on the spherical part Φ completely
drops out and that we are left with only the radial part R. But since we have that
R2(x) +R2(x2) = 1 for all x ∈ [−2,−1] ∪ [1, 2], this part will become a 1 once we square
and sum over all scales j ∈ Z≥0.

As in [2] and [1], this partition of unity property of the ridgelets will be the key point
in proving the invertibility of the ridgelet transform in 3.2.8.

In the introduction, we specified the ridgelets as a set of functions with varying loca-
tions, directions and width. So far, we have only covered the direction and width. Next,
we will thus have a look at the translations of the ridgelets.

Definition 3.1.10 (Translation sets). Let ρx, ρy and Λ be as above. Then, the transla-
tion sets T λ with λ ∈ Λ are defined as

T λ :=

[0 : Lx

4ρx
: Lx)× [0 :

Ly
4ρy

: Ly) if κ = s

[0 : Lx
2j+2ρx

: Lx)× [0 :
Ly
8ρy

: Ly) if κ = x

[0 : Lx
8ρx

: Lx)× [0 :
Ly

2j+2ρy
: Ly) if κ = y

[0 : Lx
2j+2ρx

: Lx)× [0 :
Ly
8ρy

: Ly) if κ = d

Furthermore, we define

T λx :=

4ρx if κ = s

2j+2ρx if κ = x

8ρx if κ = y

2j+2ρx if κ = d

and T λy :=

4ρy if κ = s

8ρy if κ = x

2j+2ρy if κ = y

8ρy if κ = d

We conclude this section by collecting all the defined functions in a set.

Definition 3.1.11 (Ridgelet frame). The set of functions

{ψλ}Λ,Tλ := {ψλ(· − tx, · − ty) |λ ∈ Λ, t ∈ T λ}
is called a ridgelet frame.

The reasons for this set to be called a frame is that the (rescaled) {ψλ}Λ,Tλ satisfy
the frame condition

‖f‖22 ∼
∑
λ∈Λ

∑
t∈Tλ
〈f, ψλ(· − tx, · − ty)〉2

where f : Ω → C is some arbitrary function and the ∼ means that the left side is
bounded by a constant times the right side and vice versa. In this report, no further
reference to this frame property will be made, however.

18

3.2 Ridgelet Transform

In analogy to the Fourier transforms, the process of expressing a given function as a linear
combination of ridgelets is called a ridgelet transform, and the opposite operation an
inverse ridgelet transform. These transforms introduce a new space of linear combination
coefficients which is called the ridgelet coefficient space.

Definition 3.2.1 (Ridgelet coefficient space). The set of pairs

(Λ, T) := {(λ, t) |λ ∈ Λ, t ∈ T λ}

is called the ridgelet coefficient space.

Definition 3.2.2 (Ridgelet transform). Let Ω = [0, Lx)× [0, Ly) some rectangular do-
main and f : Ω→ C a function. Then, the function R[f] : (Λ, T)→ C given by

R[f](λ, t) :=
1

LxLy

1

T λx T
λ
y

∫
Ω
f(x, y)ψλ(x− tx, y − ty) dx dy

is called the ridgelet transform of f .

Definition 3.2.3 (Inverse ridgelet transform). Let Ω = [0, Lx)× [0, Ly) be some rectan-
gular domain and f̃ : (Λ, T)→ C a function. Then, the function R−1[f̃] : Ω→ C given
by

R−1[f̃](x, y) :=
∑
λ∈Λ

∑
t∈Tλ

f̃(λ, t)ψλ(x− tx, y − ty)

is called the inverse ridgelet transform of f .

The real space ridgelet transforms as given above show what the idea behind these
transforms is. For both theoretical work as well as implementation, it is more useful to
work with their Fourier transforms, however.

Definition 3.2.4 (Fourier ridgelet transform). Let f̂ : Z2 → C be a function. Then,
the function R̂[f̂] : (Λ, T)→ C given by

R̂[f̂](λ, t) := R[F−1[f̂]](λ, t)

is called the Fourier ridgelet transform of f̂ .

Theorem 3.2.5. The Fourier ridgelet transform is given by

R̂[f̂](λ, t) =
1

T λx T
λ
y

∑
(x̂,ŷ)∈Z2

f̂(x̂, ŷ)ψ̂λ(x̂, ŷ)e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

Proof. Direct consequence of the Plancherel formula 2.3.6, the translation property of
the Fourier transform 2.3.5 and the fact that the ridgelets ψ̂λ are real.

19

Definition 3.2.6 (Inverse Fourier ridgelet transform). Let f̂ : (Λ, T)→ C be a function.
Then, the function R̂−1[f̃] : Z2 → C given by

R̂−1[f̃](x̂, ŷ) := F [R−1[f̃]](x̂, ŷ)

is called the inverse Fourier ridgelet transform of f̃ .

Theorem 3.2.7. The inverse Fourier ridgelet transform is given by

R̂−1[f̃](x̂, ŷ) =
∑
λ∈Λ

∑
t∈Tλ

f̃(λ, t)ψ̂λ(x̂, ŷ)e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

Proof. Direct consequence of the linearity of the Fourier transform and the translation
property 2.3.5.

Thanks to this Fourier ridgelet transforms, we are now able to prove the first main
theorem of this bachelor thesis.

Theorem 3.2.8 (Inverse property of the Fourier ridgelet transforms). The inverse
Fourier ridgelet transform is the left inverse of the Fourier ridgelet transform, i.e.
R̂−1 ◦ R̂ = I

Proof. Let f̂ : Z2 → C. Then,

R̂−1[R̂[f̂]](x̂, ŷ) = . . .

=
∑
λ∈Λ

∑
t∈Tλ

1

T λx T
λ
y

∑
(v̂,ŵ)∈Z2

f̂(v̂, ŵ) ψ̂λ(v̂, ŵ) ψ̂λ(x̂, ŷ)e
2πi

(
(v̂−x̂) tx

Lx
+(ŵ−ŷ)

ty
Ly

)

=
∑
λ∈Λ

∑
(v̂,ŵ)∈Z2

f̂(v̂, ŵ) ψ̂λ(v̂, ŵ) ψ̂λ(x̂, ŷ)
1

T λx T
λ
y

∑
t∈Tλ

e
2πi

(
(v̂−x̂) tx

Lx
+(ŵ−ŷ)

ty
Ly

)

=
∑
λ∈Λ

∑
(v̂,ŵ)∈Z2

f̂(v̂, ŵ) ψ̂λ(v̂, ŵ) ψ̂λ(x̂, ŷ) δ
(

(v̂ − x̂) mod T λx

)
δ
(

(ŵ − ŷ) mod T λy

)

As in 2.4.5, the fact that 1
Tλx T

λ
y

∑
t∈Tλ

e
2πi

(
(v̂−x̂) tx

Lx
+(ŵ−ŷ)

ty
Ly

)
collapses to delta functions is

due to the summation property of the root of unity.
Here we see the reason for the somewhat peculiar choice of T λx and T λy in 3.1.10: They

were chosen such that if (x̂, ŷ) ∈ Z2 lies in the support of ψ̂λ, then all (x̂ − nxT λx , ŷ −
nyT

λ
y), (nx, ny) ∈ Z2 \ {(0, 0)} do not. Therefore, we do not have to bother about the

moduli in the delta functions and can instead just write

R̂−1[R̂[f̂]](x̂, ŷ) =
∑
λ∈Λ

f̂(x̂, ŷ) ψ̂2
λ(x̂, ŷ)

= f̂(x̂, ŷ)

due to the partition of unity property 3.1.9 of the ridgelets.

20

The above theorem implies that the Fourier ridgelet transform is injective and that
the inverse Fourier ridgelet transform is surjective. However, it is important to stress
that neither of them is bijective! An easy way to see this is to think about what happens
if you Fourier ridgelet transform a ridgelet ψ̂λ: Obviously, we have R̂−1[f̃] = ψ̂λ if we
let f̃(µ, t) := δ(µ − λ) δ(t) (here, µ − λ for µ, λ ∈ Λ is defined as zero iff µ = λ and
anything different from zero otherwise). But f̃ is not the function produced by R̂[ψ̂λ]!
Rather, since ψ̂λ overlaps with some other ridgelets ψ̂µ in Fourier space, these ψ̂µ will
have nonzero coefficients as well. In conclusion, we thus observe the following:

Fact 3.2.9. The Fourier ridgelet transform is not surjective. The inverse Fourier
ridgelet transform is not injective.

Of course, both results hold equally for the original real space ridgelet transforms.

Corollary 3.2.10 (Inverse property of the ridgelet transforms). The inverse ridgelet
transform is the left inverse of the ridgelet transform, i.e. R−1 ◦ R = I

Proof. By the definition of the (inverse) Fourier ridgelet transform 3.2.4 / 3.2.6 and
the inverse property of the Fourier transforms 2.3.4, we can write R = R̂ ◦ F and
R−1 = F−1 ◦ R̂−1. Then, the claim follows by the inverse property of the Fourier
transforms 2.3.4 and the above theorem.

Fact 3.2.11. The ridgelet transform is not surjective. The inverse ridgelet transform is
not injective.

3.3 Finite Ridgelet Transform

In the same way as we introduced the finite Fourier transform as finitely computable
approximations to the ideal Fourier transforms, we will introduce here the finite ridgelet
transforms as approximations to the ideal ridgelets transforms defined in the previous
section. Since the formulae for the Fourier ridgelet transform already contain only series
and sums, we only have to specify how we truncate the series.

Definition 3.3.1 (Finite index set). Let Jx, Jy ∈ Z≥1. Then the finite index set ΛF is
given by

Λ
(J)
F = {λ ∈ Λ | j ≤ J}

if Jx = Jy = J , and

ΛF =

λ ∈ Λ
(J)
F

∣∣∣∣∣∣∣∣∣∣

true if κ = s

j ≤ min{Jx, Jy}+ 1 if κ = d

|k| ≤ 2Jy if κ = x

|k| ≤ 2Jx if κ = y

where J = max{Jx, Jy} otherwise.

21

Definition 3.3.2 (Finite ridgelet coefficient space). The set of pairs

(ΛF , T) := {(λ, t) |λ ∈ ΛF , t ∈ T λ}
is called the finite ridgelet coefficient space.

Definition 3.3.3 (Finite ridgelet transform). Let

Ω̂F =

[−ρx 2Jmax+1 : ρx 2Jmax+1 − 1]× [−ρy 2Jmax+1 : ρy 2Jmax+1 − 1] if |Jx − Jy| ≤ 1

[−4ρx (2Jx + 1) : 4ρx (2Jx + 1)− 1]× [−ρy 2Jy+1 : ρy 2Jy+1 − 1] if Jx < Jy − 1

[−ρx 2Jx+1 : ρx 2Jx+1 − 1]× [−4ρy (2Jy + 1) : 4ρy (2Jy + 1)− 1] if Jy < Jx − 1

where Jmax := max{Jx, Jy} be a part of the Fourier space and f̂ : Ω̂F → C a function.

Then, the function rt[f̂] : (ΛF , T)→ C given by

rt[f̂](λ, t) =
1

T λx T
λ
y

∑
(x̂,ŷ)∈Ω̂F

f̂(x̂, ŷ) ψ̂λ(x̂, ŷ) e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

is called the finite (Fourier) ridgelet transform of f̂ .

Definition 3.3.4 (Finite inverse ridgelet transform). Let Ω̂F be as above and f̃ :
(ΛF , T)→ C a function. Then, the function irt[f̃] : Ω̂F → C given by

irt[f̂](x̂, ŷ) =
∑
λ∈ΛF

∑
t∈Tλ

f̃(λ, t) ψ̂λ(x̂, ŷ) e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

is called the finite inverse (Fourier) ridgelet transform of f̂ .

Remember from the proof of 3.2.8 that the invertibility of the ridgelet transforms
depends on the partition of unity property of the underlying frame. Thus, the following
lemma directly tells us on what region we have irt[rt[f̂]] = f̂ .

Lemma 3.3.5 (Finite partition of unity). The ψ̂λ with λ ∈ ΛF constitute a partition of
unity on a part of Z2, namely∑

λ∈ΛF

ψ̂2
λ(x̂, ŷ) = 1 ∀(x̂, ŷ) ∈ [−ρx2Jx : ρx2Jx]× [−ρy2Jy : ρy2

Jy]

Proof. Analogous to the proof of the partition of unity property 3.1.9 of the ideal ridgelet
frame.

Note that the finite Fourier space Ω̂F defined by the finite ridgelet transforms is
larger than the region Ω̂1 where the ridgelets in the finite frame constitute a partition
of unity. In principle, one could cut Ω̂F to make it equal to Ω̂1, but this would require
special treatment of the ridgelets on scales j ≥ min{Jx, Jy} and thus introduce a lot
of technical complications. Furthermore, in the current definition the finite ridgelet
transforms still conserves some of the information in Ω̂F \Ω̂1, and thus the additional
effort is not completely wasted.

From Fact 3.2.9 we know that there exists a certain redundancy in the ridgelet coef-
ficient space. The following result allows us to quantify this redundancy.

22

Theorem 3.3.6 (Cardinality of finite ridgelet coefficient space).

|(ΛF , T)| = ρxρy

(
16 + 256

4Jmin − 1

3
+ 64 (2Jmin+1 + 1) (2Jmax − 2Jmin)

)
with Jmax = max{Jx, Jy} and Jmin = min{Jx, Jy}

Proof. Sum T λx T
λ
y for all λ ∈ ΛF .

We see that if Jmin = Jmax, the redundancy |(ΛF ,T)|
|Ω1| is bounded by 64

3 and |(ΛF ,T)|
|ΩF | by

16
3 . If we drop that condition, we have |(ΛF ,T)|

|Ω1| ≤ 32 and |(ΛF ,T)|
|ΩF | ≤ 8.

The rest of this section will be dedicated to showing how the finite ridgelet trans-
forms can be evaluated efficiently. The bottom line will be that both of them can be
performed in O (|(ΛF , T)| log (|(ΛF , T)|)), i.e. that up to a logarithmic factor, optimal
computational complexity is achievable.

We start by outlining how the rt can be implemented. In order to do so, we first need
to establish some auxiliary result.

Definition 3.3.7 (Folding operations). Let n,Nx, Ny ∈ Z≥1,

Ω̂> =

[
−dnNx − 1

2
e : bnNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

Ω̂< =

[
−dNx − 1

2
e : bNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

and f̂> : Ω̂> → C. Then, foldx[f̂>, n,Nx] : Ω̂< → C is defined as

foldx[f̂>, n,Nx](x̂, ŷ) :=

∑

v̂∈[−dn−1
2
e:bn−1

2
c]
f̂> (x̂+Nxv̂, ŷ) x̂ ≥ 0∑

v̂∈[−bn−1
2
c:dn−1

2
e]
f̂> (x̂+Nxv̂, ŷ) x̂ < 0

and the symbol foldx is called the x-folding operator.
The y-folding operator foldy is defined likewise.

Lemma 3.3.8 (Folding lemma). Let n,Nx, Ny ∈ Z≥1, Lx, Ly ∈ R>0 and

Ω> =

[
0 :

Lx
nNx

: Lx

)
×
[
0 :

Ly
Ny

: Ly

)

Ω̂> =

[
−dnNx − 1

2
e : bnNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

Ω< =

[
0 :

Lx
Nx

: Lx

)
×
[
0 :

Ly
Ny

: Ly

)
Ω̂< =

[
−dNx − 1

2
e : bNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

23

Furthermore, let f̂> : Ω̂> → C and f< := ift[f̂>]
∣∣∣
Ω<

. Then, we have

ft[f<] = foldx[f̂>, n,Nx]

Proof. First, assume x̂ ≥ 0. Then,

ft[f<](x̂, ŷ) = . . .

=
1

NxNy

∑
(x,y)∈Ω<

ift[f̂>](x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
1

NxNy

∑
(x,y)∈Ω<

1

n

 ∑
v̂∈[−dn−1

2
e:bn−1

2
c]

e−2πiNxv̂
x
Lx

︸ ︷︷ ︸

1

ift[f̂>](x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

+ . . .

1

NxNy

∑
(x,y)∈Ω<

∑
v∈∆Ωx

1

n

 ∑
v̂∈[−dn−1

2
e:bn−1

2
c]

e−2πiNxv̂
x+v
Lx

︸ ︷︷ ︸

0

ift[f̂>](x+v, y) e
−2πi (x̂x+v

Lx
+ŷ y

Ly
)

where ∆Ωx :=
(

0 : Lx
nNx

: Lx
Nx

)
. The first underbrace is 1 because Nx

x
Lx

is always an

integer for x ∈ Ω<. On the other hand, Nx
x+v
Lx

for x ∈ Ω< and v ∈ ∆Ωx is always a
proper fraction, therefore the second underbrace collapses to zero due to the summation
property of the root of unity.

Note that ∑
(x,y)∈Ω<

g(x, y) +
∑

(x,y)∈Ω<

∑
v∈∆Ωx

g(x+ v, y) =
∑

(x,y)∈Ω>

g(x, y)

Therefore, we can continue the above equations with

ft[f<](x̂, ŷ) =
1

nNxNy

∑
(x,y)∈Ω>

∑
v̂∈[−dn−1

2
e:bn−1

2
c]

ift[f̂>](x, y) e
−2πi

(
(x̂+Nxv̂) x

Lx
+ŷ y

Ly

)

=
∑

v̂∈[−dn−1
2
e:bn−1

2
c]

1

nNxNy

∑
(x,y)∈Ω>

ift[f̂>](x, y) e
−2πi

(
(x̂+Nxv̂) x

Lx
+ŷ y

Ly

)

=
∑

v̂∈[−dn−1
2
e:bn−1

2
c]

ft[ift[f̂>]] (x̂+Nxv̂, ŷ)

=
∑

v̂∈[−dn−1
2
e:bn−1

2
c]

f̂> (x̂+Nxv̂, ŷ)

= foldx[f̂>, n,Nx](x̂, ŷ)

24

(remember x̂ ≥ 0).
The proof for x̂ < 0 is the same except that the range of v̂ is shifted by +1 if n is

even. Since e−2πi (−n
2

) k
n = e−2πi n

2
k
n , the term which is dropped on the negative side in

the sums over v̂ in that case is equal to the new term on the positive side, therefore
the above arguments showing that one underbrace is 1 whereas the other is 0 work out
exactly the same.

This result can now be used for evaluating the ridgelet transform for some fixed λ ∈ Λ.

Lemma 3.3.9. Let Ω̂F be as in Definition 3.3.3. The complexity of evaluating

f̃λ(t) :=
1

T λx T
λ
y

∑
(x̂,ŷ)∈Ω̂F

f̂(x̂, ŷ) ψ̂λ(x̂, ŷ) e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

for some fixed λ ∈ Λ and all t ∈ T λ is O
(
T λx T

λ
y log(T λx T

λ
y)
)
.

Proof. We will show the lemma only for the case λ = (j, κ = x, k). For κ ∈ {y, d}, the
proof is analogous and for κ = s it is trivial.

Note that the above expression corresponds to f̃λ = 1
Tλx T

λ
y
ift[f̂ ψ̂λ] except that the

sizes of the domains of f̃λ and f̂ ψ̂λ (i.e. T λ and Ω̂F) match only in x-direction, but not
necessarily in y. Because the support of ψ̂λ is contained within

Ω̂> :=

[
−dT

λ
x − 1

2
e : bT

λ
x − 1

2
c
]
×
[
−d

(|k|+ 1)T λy − 1

2
e : b

(|k|+ 1)T λy − 1

2
c
]

we can restrict the domain of f̂ ψ̂λ from Ω̂F to Ω̂> such that the domain of ift[f̂ ψ̂λ] will
be

Ω> :=

[
0 :

Lx
T λx

: Lx

)
×
[
0 :

Ly
(|k|+ 1)T λy

: Ly

)
But we want to evaluate f̃λ only on

Ω< := T λ =

[
0 :

Lx
T λx

: Lx

)
×
[
0 :

Ly
T λy

: Ly

)
thus we apply the folding lemma 3.3.8 and compute f̃λ as

f̃λ(t) =
1

T λx T
λ
y

ift
[
foldy

[
f̂ ψ̂λ, |k|+ 1, T λy

]]
Since the number of points in the support of ψ̂λ is bounded by T λx T

λ
y , we can evaluate

the sums in foldy for all (x̂, ŷ) ∈
[
−dTλx−1

2 e : bTλx−1
2 c

]
×
[
−dT

λ
y −1

2 e : bT
λ
y −1

2 c
]

in only

O(T λx T
λ
y). The dominating computational effort is thus the ift whose complexity is

known to be O
(
T λx T

λ
y log(T λx T

λ
y)
)

(see 2.4.6).

25

The following diagram can be helpful for understanding the above arguments:

f̂ ψ̂λ : Ω̂> → C ft[f̃λ] : Ω̂< → C

ift[f̂ ψ̂λ] : Ω> → C f̃λ : T λ → C

A ift

B

restrict domain

C

fold

Dift

First, the folding lemma 3.3.8 establishes arrow C by going along A, B and the inverse
of D. Then, Lemma 3.3.9 proves that the overall complexity of going along arrows C and
D is O

(
T λx T

λ
y log(T λx T

λ
y)
)
. Note that this is less than going along A and B since in step

A we would destroy the sparsity structure of supp f̂ ψ̂λ.
With the work done so far, proving the overall complexity of the rt becomes easy.

Theorem 3.3.10 (Complexity of rt). Let Jmin = min{Jx, Jy} and Jmax = max{Jx, Jy}.
Then, the complexity of evaluating rt for all λ ∈ ΛF and t ∈ T λ is

O
(
log(ρxρy) ρxρy

(
Jmin 4Jmin + Jmax 2Jmax

))
Proof. By lemma 3.3.9 and the definition of the translation sets T λ 3.1.10 we know
that the complexity of evaluating rt[f̂](λ, t) for some fixed λ ∈ Λ and all t ∈ T λ is
O
(
log(ρxρy) ρxρy j 2j

)
. On a fixed scale j we have O(2 min{j,Jmin}) ridgelets, and thus

the overall complexity is

Jmin∑
j=0

O
(
2j
)
O
(
log(ρxρy) ρxρy j 2j

)
+

Jmax∑
j=Jmin+1

O
(
2Jmin

)
O
(
(log(ρxρy) ρxρy j 2j

)
= O

(
log(ρxρy) ρxρy

(
Jmin 4Jmin + Jmax 2Jmax

))

The algorithm for evaluating the irt is derived in exactly the same way.

Definition 3.3.11 (Unfolding operations). Let n,Nx, Ny ∈ Z≥1,

Ω̂> =

[
−dnNx − 1

2
e : bnNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

Ω̂< =

[
−dNx − 1

2
e : bNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

26

and f̂< : Ω̂< → C. Then, unfoldx[f̂<, n,Nx] : Ω̂> → C is defined as

unfoldx[f̂<, n,Nx](x̂, ŷ) :=
1

n
f<

(
x̂−Nx [

x̂

Nx
], ŷ

)
([·] denotes rounding to nearest integer or +∞ if the nearest integer is not unique) and
the symbol unfoldx is called the x-unfolding operator.

The y-unfolding operator unfoldy is defined likewise.

Lemma 3.3.12 (Unfolding lemma). Let n,Nx, Ny ∈ Z≥1, Lx, Ly ∈ R>0,

Ω> =

[
0 :

Lx
nNx

: Lx

)
×
[
0 :

Ly
Ny

: Ly

)
Ω̂> =

[
−dnNx − 1

2
e : bnNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

Ω< =

[
0 :

Lx
Nx

: Lx

)
×
[
0 :

Ly
Ny

: Ly

)
Ω̂< =

[
−dNx − 1

2
e : bNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

and f̂< : Ω̂< → C. Furthermore, let f> : Ω> → C be given by

f>(x, y) :=

{
ift[f̂<](x, y) if (x, y) ∈ Ω<

0 otherwise

Then, we have
ft[f>] = unfoldx[f̂<, n,Nx]

Proof.

ft[f>](x̂, ŷ) =
1

nNxNy

∑
(x,y)∈Ω>

f>(x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
1

nNxNy

∑
(x,y)∈Ω<

ift[f̂<](x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
1

n

1

NxNy

∑
(x,y)∈Ω<

ift[f̂<](x, y) e
−2πi

((
x̂−Nx[x̂

Nx
]
)
x
Lx

+ŷ y
Ly

)

(The additional term in the exponential can be added becauseNx
x
Lx

is always an integer.)

=
1

n
ft[ift[f̂<]]

(
x̂−Nx[

x̂

Nx
], ŷ

)
=

1

n
f̂<

(
x̂−Nx[

x̂

Nx
], ŷ

)
= unfoldx[f̂<, n,Nx](x̂, ŷ)

27

Lemma 3.3.13. The complexity of evaluating

f̂λ(x̂, ŷ) :=
∑
t∈Tλ

f̃(λ, t) e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

for some fixed λ ∈ Λ and all (x̂, ŷ) ∈ supp ψ̂λ is O
(
T λx T

λ
y log(T λx T

λ
y)
)
.

Proof. We will show the lemma only for the case λ = (j, κ = x, k). For κ ∈ {y, d}, the
proof is analogous and for κ = s it is trivial.

Note that the above expression corresponds to f̂λ = T λx T
λ
y ft[f̃(λ, ·)] except that we

want the domain of ft[f̃(λ, ·)] to be not

Ω̂< :=

[
−dT

λ
x − 1

2
e : bT

λ
x − 1

2
c
]
×
[
−d

T λy − 1

2
e : b

T λy − 1

2
c
]

but rather a subset of

Ω̂> :=

[
−dT

λ
x − 1

2
e : bT

λ
x − 1

2
c
]
×
[
−d

(|k|+ 1)T λy − 1

2
e : b

(|k|+ 1)T λy − 1

2
c
]

We can achieve this by defining

T λ> :=

[
0 :

Lx
T λx

: Lx

)
×
[
0 :

Ly
(|k|+ 1)T λy

: Ly

)

f̃>(λ, ·) : T λ> → C, t 7→
{
f̃(λ, t) if t ∈ T λ
0 otherwise

Because all new terms in the ft sum are zero, writing f̂λ = T λx (|k|+ 1)T λy ft[f̃>(λ, ·)] is
now correct both in terms of equal values as well as equal domains. Running the ft on
a function which is mostly zero seems to be a waste of effort, however, and indeed the
unfolding lemma 3.3.12 shows that the above expression is equivalent to

f̂λ(x̂, ŷ) = T λx (|k|+ 1)T λy unfoldy
[
ft[f̃(λ, ·)], |k|+ 1, T λy

]
(x̂, ŷ)

We evaluate the unfoldy only on O(T λx T
λ
y) points, and each point evaluation can be

done in O(1) once ft[f̃(λ, ·)] is available. The dominating computational effort is thus
computing the ft which can be done in O

(
T λx T

λ
y log(T λx T

λ
y)
)
, see Theorem 2.4.6.

Again, it is helpful to visualize what is happening in a diagram:

28

f̃(λ, ·) : T λ → C f̃>(λ, ·) : T λ> → C

ft[f̃(λ, ·)] : Ω̂< → C f̂λ : supp ψ̂λ ⊂ Ω̂> → C

A ft

B

unfold

C

extend domain

Dft

The unfolding lemma 3.3.12 establishes arrow B by going along the inverse of A and
C, D. Then, Lemma 3.3.13 proves that the overall complexity of going along arrows A
and B is O

(
T λx T

λ
y log(T λx T

λ
y)
)
. Note that this is less than going along C and D since in

step D we would have to compute the ft of the extended f̃>(λ, ·).
As before, the overall complexity of the irt simply follows from the above lemma.

Theorem 3.3.14 (Complexity of irt). Let Jmin = min{Jx, Jy} and Jmax = max{Jx, Jy}.
Then, the complexity of evaluating irt for all (x̂, ŷ) in its domain is

O
(
log(ρxρy) ρxρy

(
Jmin 4Jmin + Jmax 2Jmax

))
Proof. The only thing which is different from the proof of the complexity of rt in 3.3.10 is
that in the end we have to sum up all the f̂λ. Since every point in the Fourier space lies in
the support of at most four ridgelets and we evaluate the irt on O

(
ρxρy(4

Jmin + 2Jmax)
)

points, that sum does not dominate the overall complexity.

We have seen that the finite ridgelet transforms can in theory achieve an almost
optimal computational complexity of O(N log(N)) where N is (proportional to) the
number of input and output parameters. Achieving the same complexity in a practical
implementation requires a lot of work, however, since the fold and unfold methods
need to be able to exploit the special sparsity structures exhibited by the supports of
the ridgelets [5]. The Matlab implementation which comes with this bachelor thesis

achieves only a theoretical scaling of O(N
3
2) but therefore uses fast Matlab built-in

algorithms for folding and unfolding. Figure 3.2 shows that like this, the O(N
3
2) scaling

can only be observed for very large N where the algorithms reach their compute power
and memory limits anyway.

29

Figure 3.2: Scaling plot of rt and irt. ρx = ρy = 1 and Jx = Jy ∈ [1 : 10] were used.
N was computed as 4J .

30

4 Intermezzo: Scalar Products

The aim of the previous chapters on Fourier theory and ridgelets is to develop solvers
for the radiative transport equation. Before we can tackle that task, we first have to put
one more piece into place, however: We need to choose scalar products for the different
function spaces, and we need to show some relations between these scalar products.

4.1 Definitions

Definition 4.1.1 (Finite real space scalar product). Let Nx, Ny and ΩF be as in the
definition of the finite Fourier transform 2.4.1 and f, g : ΩF → C. Then, the finite real
space scalar product of f and g is given by

〈f, g〉ΩF :=
1

NxNy

∑
(x,y)∈ΩF

f(x, y) g(x, y)

Definition 4.1.2 (Finite Fourier space scalar product). Let Ω̂F be as in the definition
of the finite Fourier transform 2.4.1 and f̂ , ĝ : Ω̂F → C. Then, the finite Fourier space
scalar product of f̂ and ĝ is given by

〈f̂ , ĝ〉Ω̂F :=
∑

(x̂,ŷ)∈Ω̂F

f̂(x̂, ŷ) ĝ(x̂, ŷ)

Definition 4.1.3 (Finite ridgelet coefficient space scalar product). Let f̃ , g̃ : (ΛF , T)→
C. Then, the finite ridgelet coefficient space scalar product of f̃ and g̃ is given by

〈f̃ , g̃〉(ΛF ,T) :=
∑
λ∈ΛF

T λx T
λ
y

∑
t∈Tλ

f̃(λ, t) g̃(λ, t)

4.2 Relations

The above scalar products correspond to the standard `2 scalar product with some
additional prefactors. The purpose of these prefactors is to assert that the scalar products
are preserved under the Fourier and ridgelet transforms.

Theorem 4.2.1 (Real/Fourier space scalar product equivalence). Let ΩF be as in the
definition of the finite Fourier transform 2.4.1 and f, g : ΩF → C. Then, we have

〈f, g〉ΩF = 〈ft[f], ft[g]〉Ω̂F

31

Proof. Note that the above equation is the finite analogue to the Plancherel formula
2.3.6. The proof is exactly the same as in the continuous case, except that the infinite
spaces are replaced with their finite counterparts and the series and integrals are replaced
by sums.

Theorem 4.2.2 (Fourier/ridgelet space scalar product equivalence). Let Ω̂F be as in
the definition of the finite Fourier transform 2.4.1, f̂ : Ω̂F → C and g̃ : (ΛF , T) → C.
Then, we have

〈f̂ , irt[g̃]〉Ω̂F = 〈rt[f̂], g̃〉(ΛF ,T)

Proof.

〈f̂ , irt[g̃]〉Ω̂F =
∑

(x̂,ŷ)∈Ω̂F

f̂(x̂, ŷ)
∑
λ∈ΛF

∑
t∈Tλ

g̃(λ, t) ψ̂λ(x̂, ŷ) e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

=
∑
λ∈ΛF

T λx T
λ
y

∑
t∈Tλ

 1

T λx T
λ
y

∑
(x̂,ŷ)∈Ω̂F

f̂(x̂, ŷ)ψ̂λ(x̂, ŷ) e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

 g̃(λ, t)

= 〈rt[f̂], g̃〉(ΛF ,T)

Because the finite Fourier transforms are mutually inverse, we can substitute f with
ift[f̂] or g with ift[ĝ] and get all the following equivalences for free:

〈f, ift[ĝ]〉ΩF = 〈ft[f], ĝ〉Ω̂F

〈ift[f̂], g〉ΩF = 〈f̂ , ft[g]〉Ω̂F
〈ift[f̂], ift[ĝ]〉ΩF = 〈f̂ , ĝ〉Ω̂F

It is important to stress that the same is not true for the ridgelet transforms, however!
In fact,

〈irt[f̃], ĝ〉Ω̂F = 〈f̃ , rt[ĝ]〉(ΛF ,T)

is the only correct additional equivalence to the one shown in Theorem 4.2.2, and the
right argument to prove its correctness is the conjugate symmetry of the scalar products.

Since R̂−1 ◦ R̂ = I, one might think that

〈f̂ , ĝ〉Ω̂F 6= 〈rt[f̂], rt[ĝ]〉(ΛF ,T) (4.2.1)

should be an equality as it seems that we can substitute g̃ with rt[ĝ] in Theorem 4.2.2.
But remember from Section 3.3 that irt ◦ rt holds only on the region where the frame
constitutes a partition of unity, which in this case is not the entire domain of ĝ. For
example, if we have a square frame with Jx = Jy = J , ρx = ρy = ρ and choose

ĝ(x̂, ŷ) = δ
(
x̂+ ρ2J+1

)
+ δ

(
ŷ + ρ2J+1

)

32

we have that irt[rt[ĝ]](x̂, ŷ) = 0 for all (x̂, ŷ) because no ridgelet covers that highest
frequency part. With that ĝ, the right hand side in (4.2) is zero for all f̂ while the left
hand side is not.

Finally,
〈irt[f̃], irt[g̃]〉Ω̂F 6= 〈f̃ , g̃〉(ΛF ,T)

would not even become an equality for the infinite ridgelet transforms, because due to
the redundancy in ridgelet coefficient space the inverse ridgelet transforms must have a
kernel K. If we thus choose e.g. f̃ , g̃ ∈ K, then the left hand side is zero while the right
hand side is not necessarily.

33

5 Radiative Transport Equation

5.1 Basic RTE Solver

In order to get started, let us consider the following simplified version of the radiative
transport equation

s · ∇u+ κu = f (5.1.1)

where here u, κ, f : Ω→ R, i.e. we neglect scattering and consider only a fixed direction
s ∈ S1 (we set again Ω := [0, Lx) × [0, Ly) and S1 := {s ∈ R2 | ‖s‖2 = 1}). In the
following, we will write the solution u as the inverse Fourier transform F−1[û] of some
Fourier space function û. A necessary consequence of this approach is that we must
consider periodic boundary conditions

u(0, y) = u(Lx, y), u(x, 0) = u(x, Ly) ∀x ∈ [0, Lx) and y ∈ [0, Ly)

(remember the discussion on the inherent periodicity of the Fourier transforms after
definition 2.3.2). Although such boundary conditions are rarely physically justified,
they do not prevent us from solving real-world problems either. For example, if we want
to simulate zero inflow boundary conditions, we can enlarge the domain or artificially
increase κ near the boundary such that all the radiation is absorbed within one period.
General Dirichlet boundary conditions can be imposed through a clever choice of κ and
f near the boundary, see Section 6.3.

In this simplified case considered here, it is easy to discretize the RTE:

Definition 5.1.1 (Fourier space RTE operator). Let Lx, Ly ∈ Z>0, s ∈ S1, κ : [0, Lx)×
[0, Ly)→ R and f̂ : Z2 → C. Then, T̂ [f̂] : Z2 → C is a function given by

T̂ [f̂](x̂, ŷ) := 2πi s ·
(
x̂

Lx
,
ŷ

Ly

)T
f̂(x̂, ŷ) + F

[
κF−1[f̂]

]
(x̂, ŷ)

and the symbol T̂ is called the Fourier space RTE operator.

Definition 5.1.2 (Ridgelet coefficient space RTE operator). Let f̃ : (Λ, T)→ C. Then,
T̃ [f̃](λ, t) : (Λ, T)→ C is a function given by

T̃ [f̃](λ, t) := R̂
[
T̂
[
R̂−1[f̃]

]]
(λ, t)

and the symbol T̃ is called the ridgelet coefficient space RTE operator.

34

It can easily be verified that

s · ∇u+ κu = f ⇐⇒ T̂ [F [u]] = F [f] ⇐⇒ T̃ [R[u]] = R[f]

Since both F and R have left inverses, we can thus solve (5.1) by solving either of

T̂ [û] = F [f], u = F−1[û] (5.1.2)

T̃ [ũ] = R[f], u = R−1[ũ] (5.1.3)

Neither of these problems can yet be solved numerically as they involve infinitely many
equations in infinitely many unknowns. But with the finite transforms developed in
Chapter 2 and 3, the following approximations come naturally.

Definition 5.1.3 (Finite Fourier space RTE operator). Let Lx, Ly ∈ Z>0, s ∈ S1,
Nx, Ny ∈ Z≥1,

ΩF =

[
0 :

Lx
Nx

: Lx

)
×
[
0 :

Ly
Ny

: Ly

)
Ω̂F =

[
−dNx − 1

2
e : bNx − 1

2
c
]
×
[
−dNy − 1

2
e : bNy − 1

2
c
]

κ : ΩF → R and f̂ : Ω̂F → C. Then, Tfs[f̂] : Ω̂F → C is a function given by

Tfs[f̂](x̂, ŷ) := 2πi s ·
(
x̂

Lx
,
ŷ

Ly

)T
f̂(x̂, ŷ) + ft

[
κ ift[f̂]

]
(x̂, ŷ)

and the symbol Tfs is called the finite Fourier space RTE operator.

Definition 5.1.4 (Finite ridgelet coefficient space RTE operator). Let f̃ : (ΛF , T)→ C.
Then, Trcs[f̃] : (ΛF , T)→ C is a function given by

Trcs[f̃](λ, t) := rt
[
Tfs

[
irt[f̃]

]]
(λ, t)

and the symbol Trcs is called the finite ridgelet coefficient space RTE operator.

With these new operators, (5.1) and (5.1) become

Tfs[û] = ft[f], u = ift[û] (5.1.4)

Trcs[ũ] = rt [ft[f]] , u = ift [irt[ũ]] (5.1.5)

where here u and f mean the u and f from (5.1) sampled on the grid defined by the
(i)ft. While it is clear that these equations correspond to linear systems of equations,
formulating these systems explicitly can nevertheless be tedious. Luckily, though, it is
neither necessary nor advisable. Rather, we can use iterative methods like the conjugate
gradient (CG) iterations which have the benefit that they are able to deal with vectors in
an abstract sense, i.e. vectors which only satisfy the vector axioms but are not necessarily
taken from Rn, and abstract linear operators acting on such vectors.

35

In this abstract formulation, problems (5.1) and (5.1) read

L[u] = f (5.1.6)

where u and f are taken from some vector space V and L : V → V is a linear operator.
For the CG method to work, L has to be self-adjoint and positive (semi-)definite in the
chosen norm, i.e. 〈f,L[g]〉 = 〈L[f], g〉 and 〈f,L[f]〉 ≥ 0 have to hold. If L does not yet
satisfy these conditions, the standard approach is to solve the normal equations

L∗ [L[u]] = L∗[f]

instead of (5.1), where L∗ denotes the adjoint of L. Because neither Tfs nor Trcs satisfy
yet the “self-adjoint and positive semidefinite” criterion, we will use CG on the normal
equations as well. Therefore, we need the following two theorems.

Theorem 5.1.5 (Adjoint of Tfs). The adjoint Tfs∗ of Tfs in the finite Fourier space
scalar product is given by

Tfs∗[f̂](x̂, ŷ) := −2πi s ·
(
x̂

Lx
,
ŷ

Ly

)T
f̂(x̂, ŷ) + ft

[
κ̄ ift[f̂]

]
(x̂, ŷ)

Proof. Because (L+K)∗ = L∗ +K∗ for two linear operators L,K, we can show for each
term in Tfs∗ separately that it is the adjoint of the respective term in Tfs. For the first
term, this relationship is obvious. For the second, with f̂ , ĝ : Ω̂F → C, we get

〈f̂ , ft [κ ift[ĝ]]〉Ω̂F = 〈ift[f̂], κ ift[ĝ]〉ΩF
= 〈κ̄ ift[f̂], ift[ĝ]〉ΩF
= 〈ft

[
κ̄ ift[f̂]

]
, ĝ〉Ω̂F

where we have made use of the equivalence of the real and Fourier space scalar products,
see Theorem 4.2.1.

Theorem 5.1.6 (Adjoint of Trcs). The adjoint Trcs∗ of Trcs in the finite ridgelet
coefficient space scalar product is given by

Trcs∗[f̃](λ, t) := rt
[
Tfs∗

[
irt[f̃]

]]
(λ, t)

Proof. Let f̃ , g̃ : (ΛF , T)→ C, Then,

〈f̃ , rt [Tfs [irt[g̃]]]〉(ΛF ,T) = 〈irt[f̃], Tfs [irt[g̃]]〉Ω̂F
= 〈Tfs∗

[
irt[f̃]

]
, irt[g̃]〉Ω̂F

= 〈rt
[
Tfs∗

[
irt[f̃]

]]
, g̃〉(ΛF ,T)

where we used the equivalence of the Fourier and ridgelet coefficient space scalar product,
see Theorem 4.2.2.

36

Our equations thus become

Tfs∗ [Tfs[û]] = Tfs∗ [ft[f]] , u = ift[û]

Trcs∗ [Trcs[ũ]] = rt [Tfs∗ [ft[f]]] , u = ift [irt[ũ]]

and can now in theory be solved by CG. However, it is not hard to see that the directional
derivative term in Tfs leads to very ill conditioned operators. Therefore one needs to
apply preconditioners to these problems such that the final equations read

(DTfs ◦ Tfs∗ ◦ Tfs ◦ DTfs) [ûp] = (DTfs ◦ Tfs∗) [ft[f]] , u = ift [DTfs[ûp]] (5.1.7)

(DTrcs ◦ Trcs∗ ◦ Trcs ◦ DTrcs) [ũp] = (DTrcs ◦ Trcs∗) [rt [ft[f]]] ,

u = ift [irt [DTrcsũp]]]
(5.1.8)

with

DTfs[f̂](x̂, ŷ) :=
f̂(x̂, ŷ)

1 + |sx x̂+ sy ŷ|
(5.1.9)

DTrcs[f̃](λ, t) :=
f̃(λ, t)

1 + 2j |s · sλ|
(5.1.10)

where s is the transport direction in the RTE and

sλ =
s̃λ
‖s̃λ‖2

, s̃λ =

(0, 0)T if κ = s

(1, k
2j−1)T if κ = x

(k
2j−1 , 1)T if κ = y

(1, k)T if κ = d

is the direction of the ridgelet ψ̂λ in Fourier space. The ridgelet preconditioner DTrcs is
based on a recent result by Grohs [1], where it is shown that this choice leads to bounded
condition numbers.

5.2 Convergence Of Basic RTE Solver

The key step in developing the basic RTE solvers was to replace the infinite Fourier
and ridgelet transforms in the RTE with their finite counterparts. Obviously, we thus
bought computational feasibility at the expense of exactness of the solution. While the
algorithmic complexities of the basic RTE solvers follow straightforwardly from the ones
shown for the various transforms, it remains yet to analyze how large the loss in precision
is. In the following, we will tackle exactly this task.

Let u denote the exact solution of (5.1) and u′ the approximation obtained from
(5.1) or (5.1), with û and û′ their respective Fourier transforms. Strictly speaking, the
approximate solution u′ = ift[û′] is only defined on a discrete set of points, whereas

37

u is defined on Ω := [0, Lx) × [0, Ly). In order to make the two domains equal, let us
extend u′ to a solution on Ω by writing u′ = F−1 [Z[û′]] (see also the discussion after
the definition of the ift in 2.4.2). Also, let u be in the Sobolev space Hk, k > 1.

We will assume the support of û′ to be [−N : N]2 for some N ∈ Z>0, i.e. it shall
be square and have an odd number of points in both directions. The purpose of these
assumptions is to allow for a concise notation, but besides that they are of no impor-
tance for what is to follow. In concrete terms, we have N ≈ Nx

2 =
Ny
2 for the Fourier

discretization and N ≈ ρx2Jx+1 = ρy2
Jy+1 for the ridgelet discretization where the ≈

accounts for rounding and small constant correction terms.
We write for the error

‖u− u′‖2L2(Ω) :=

∫
Ω
|u(x, y)− u′(x, y)|2 dx dy

=
∑

(x̂,ŷ)∈Z2

|û(x̂, ŷ)−Z[û′](x̂, ŷ)|2

=
∑

(x̂,ŷ)∈Z2\[−N :N]2

|û(x̂, ŷ)|2 +
∑

(x̂,ŷ)∈[−N :N]2

|û(x̂, ŷ)− û′(x̂, ŷ)|2 (5.2.1)

where in the first line we made us of the Plancherel formula 2.3.6.
The first term describes a truncation error, thus by Theorem 2.4.7∑

(x̂,ŷ)∈Z2\[−N :N]2

|û(x̂, ŷ)|2 = O

(
1

N2k−1−ε

)

for all ε ∈ (0, 2k − 1).
In order to estimate the second term in (5.2), we will need the following theorem.

Theorem 5.2.1. Let A ∈ Rn×n a nonsingular matrix and δA ∈ Rn×n be such that
‖A−1‖‖δA‖ < 1. Then, if x ∈ Rn is the solution of Ax = b with b ∈ Rn, (b 6= 0) and
δx ∈ Rn satisfies (A+ δA)(x+ δx) = b+ δb for δ ∈ Rn,

‖δx‖
‖x‖ ≤

κ(A)

1− κ(A)‖δA‖‖A‖

(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)

where κ(A) := ‖A−1‖‖A‖ denotes the condition number of A.

Proof. See [6, Theorem 3.1].

The exact solution of the RTE satisfies(
DTfs ◦ C ◦ T̂ ◦ Z

)
[C[û]] = (DTfs ◦ C ◦ F) [f]−

(
DTfs ◦ C ◦ T̂

)
[û− (Z ◦ C) [û]] (5.2.2)

whereas the approximate solution satisfies

(DTfs ◦ Tfs) [û′] = DTfs [ft[f]] (5.2.3)

38

In the notation of the above theorem, we can define the exact operator as

A := DTfs ◦ C ◦ T̂ ◦ Z
with perturbation

δA := DTfs ◦ Tfs− DTfs ◦ C ◦ T̂ ◦ Z
and the exact right hand side as

b = (DTfs ◦ C ◦ F) [f]−
(
DTfs ◦ C ◦ T̂

)
[û− (Z ◦ C) [û]]

with perturbation

δb := DTfs [ft[f]]− (DTfs ◦ C ◦ F) [f] +
(
DTfs ◦ C ◦ T̂

)
[û− (Z ◦ C) [û]]

such that (5.2) and (5.2) become
A [C[û]] = b

and
(A+ δA)

[
û′
]

= b+ δb

It is easy to verify that κ(A), ‖A‖Ω̂F and ‖b‖Ω̂F are bounded in N . Also, we will prove
soon that ‖δA‖Ω̂F vanishes for N →∞. In that limit, we thus have∑

(x̂,ŷ)∈[−N :N]2

|û(x̂, ŷ)− û′(x̂, ŷ)|2 = ‖C[û]− û′‖2
Ω̂F

= O
(
‖δA‖Ω̂F + ‖δb‖Ω̂F

)2

Giving ‖δA‖Ω̂F a closer look, we get

‖δA‖Ω̂F = max
ĝ:[−N :N]2→C
‖ĝ‖Ω̂F =1

‖DTfs
[
Tfs[ĝ]−

(
C ◦ T̂ ◦ Z

)
[ĝ]
]
‖Ω̂F

= max
ĝ:[−N :N]2→C
‖ĝ‖Ω̂F =1

‖DTfs
[
ft [κ ift[ĝ]]− (C ◦ F)

[
κ
(
F−1 ◦ Z

)
[ĝ]
]]
‖Ω̂F

Using F−1 ◦ Z = ift, ‖DTfs‖Ω̂F = 1 and the convergence estimate for the quadrature
error 2.4.9, we may continue

‖δA‖Ω̂F = max
ĝ:[−N :N]2→C
‖ĝ‖Ω̂F =1

‖DTfs [ft [κ ift[ĝ]]− (C ◦ F) [κ ift[ĝ]]] ‖Ω̂F

≤ max
ĝ:[−N :N]2→C
‖ĝ‖Ω̂F =1

‖DTfs‖Ω̂F ‖ft [κ ift[ĝ]]− (C ◦ F) [κ ift[ĝ]] ‖Ω̂F

= max
ĝ:[−N :N]2→C
‖ĝ‖Ω̂F =1

O
(
N−(k−1)

)

= O
(
N−(k−1)

)

39

Similarly, we get for ‖δb‖Ω̂F

‖δb‖Ω̂F = ‖DTfs [ft[f]− (C ◦ F) [f]] +
(
DTfs ◦ C ◦ T̂

)
[û− (Z ◦ C) [û]] ‖Ω̂F

≤ ‖DTfs‖Ω̂F ‖ft[f]− (C ◦ F) [f]‖Ω̂F + ‖
(
DTfs ◦ C ◦ T̂

)
[û− (Z ◦ C) [û]] ‖Ω̂F

For the first term, the same arguments as we used when estimating ‖δA‖Ω̂F apply. For

the second term, we have by Theorem 2.4.7 that ‖û−(Z ◦ C) [û]‖Ω̂F = O
(
N−(k−1/2−ε/2)

)
.

Since DTfs ◦ C ◦ T̂ is a bounded operator, we thus get

‖δb‖Ω̂F = O
(
N−(k−1)

)
+O(1)O

(
N−(k−1/2−ε/2)

)
= O

(
N−(k−1)

)
In conclusion,∑

(x̂,ŷ)∈[−N :N]2

|û(x̂, ŷ)− û′(x̂, ŷ)|2 = O
(
‖δA‖Ω̂F + ‖δb‖Ω̂F

)2
= O

(
N−2(k−1)

)
Inserting our results into equation (5.2), we see that the convergence of the basic RTE

solvers is

‖u− u′‖2L2(Ω) = O
(
N−(2k−1−ε)

)
+O

(
N−2(k−1)

)
= O

(
N−2(k−1)

)
i.e.

‖u− u′‖L2(Ω) = O
(
N−(k−1)

)
or specifically for the ridgelet based discretization (assuming Jx = Jy =: J)

‖u− u′‖L2(Ω) = O
(

2−J(k−1)
)

5.3 Discrete Ordinates Method

As a next step, we consider the same equation

s · ∇u+ κu = f (5.3.1)

but this time we let s ∈ S1 also be an independent variable such that u, κ, f : Ω×S1 → R.
The discrete ordinates method (DOM) as outlined in [8, Section 2] solves this problem
in the following way:

• Choose some directions {si}Nsi=1 ⊂ S1, Ns ∈ Z≥1.

• Solve (5.3) for these fixed directions, which gives you the one-directional solutions
u′i(x, y).

40

• Interpolate the (si, u
′
i) to get a solution for the full domain Ω× S1.

In this report, we will use equispaced directions si := 2π i−1
N and linear interpolation

for simplicity. Step two is done with the ridgelet based solver developed in the previous
section.

Introducing the equispaced periodic linear interpolation operator

N
IS
i=1

[fi] (x, y, s) :=

fl+1(x, y) if l := Nϕ(s)

2π ∈ Z

(dle − l)fbic+1(x, y) + . . .

(l − blc)f(dle mod N)+1(x, y)
otherwise

(ϕ(s) denotes the angle between s ∈ S1 and the positive x-axis in the usual mathematical
convention), we can write the solution u′ produced by the DOM as

u′(x, y, s) =
Ns
IS
i=1

[u′i](x, y, s)

If we further let u : Ω × S1 be the exact solution and δui(x, y) := u(x, y, si) − u′i(x, y)
the error in the approximate solutions u′i, we get for the total error

∥∥u− u′∥∥
L2(Ω×S1)

=

∥∥∥∥u− Ns
IS
i=1

[ui + δui]

∥∥∥∥
L2(Ω×S1)

≤
∥∥∥∥u− Ns

IS
i=1

[ui]

∥∥∥∥
L2(Ω×S1)

+

∥∥∥∥NsIS
i=1

[δui]

∥∥∥∥
L2(Ω×S1)

The first term describes a pure interpolation error, which for linear interpolation is
known to be O

(
N−2
s

)
if u(x, y, ·) ∈ C2. The second term is the error due to the basic

RTE solver, which in the previous section was shown to be O
(
2−J(k−1)

)
. In conclusion,

we thus have
‖u− u′‖L2(Ω×S1) = O

(
N−2
s

)
+O

(
2−J(k−1)

)
As we can see, we have to choose Ns ∼ bJ with b = 2−

1
2

(k−1) in order for the angular
and spatial errors to be balanced. The outlined discrete ordinates method scales thus as
O
(
Ns 2Jx+Jy

)
= O

(
(4b)J

)
, which can quickly become prohibitively expensive.

5.4 Sparse Discrete Ordinates Method

In order to mitigate the scaling problem of the (full) discrete ordinates method, the
sparse discrete ordinates method (SDOM) was developed in [8, Section 4]. Adapted to
the situation here, the SDOM reads the following: Given a finite ridgelet frame with
Jx = Jy =: J and a constant b ∈ Z≥2, let j = 1, ..., J and i = 1, ..., bJ−j+1. Then, for

each pair (j, i), we solve the RTE in direction sj,i :=
(
cos
(
2π i−1

bJ−j+1

)
, sin

(
2π i−1

bJ−j+1

))T
using the ridgelet RTE solver developed in Section 5.1 with a subframe of the original

41

S

J

S

J

S

J

Figure 5.1: Illustration of the SDOM for J = 3 and b = 4. In the upper row, the lengths
of the arrows represent the number of scales that were used whereas their
number and directions indicate how many and which directions are used for
angular interpolation. The bottom row shows in which detail spaces the
functions obtained in this way live (the J-arrow denotes increasing frame
size, the S-arrow denotes increasing number of angular interpolation points).

frame where Jx = Jy = j. These partial solutions are stored in u′j,i(x, y) and eventually
the full solution u′(x, y, s) is computed as

u′(x, y, s) =
bJ

IS
i=1

[
u′1,i
]

(x, y, s) + . . .

J∑
j=2

(
bJ−j+1

IS
i=1

[
u′j,i
]

(x, y, s)−
bJ−j+1

IS
i=1

[
u′j−1, b (i−1)+1

]
(x, y, s)

)
A graphical representation of the SDOM is given in Figure 5.1.

In [8, Lemma 4.3], Grella and Schwab show that in their setting the convergence of the
SDOM deteriorates only by a logarithmic factor compared to the full DOM with physical
and angular resolutions equal to the highest resolutions used in the SDOM. The same
proof works in our case as well, but since the basic RTE solver is not a mere projection
of the true solution to some subspace, our notation will be somewhat different.

Let u : Ω× S1 be the exact solution and δuj,i(x, y) := u(x, y, si)− u′j,i(x, y). Further-
more, let δuj(x, y, s) := u(x, y, s)−u′j(x, y, s) where u′j is the solution obtained with the

42

basic RTE solver in any direction s ∈ S1. We can then write

‖u− u′‖L2(Ω×S1) =

∥∥∥∥∥u− bJ

IS
i=1

[u(s1,i) + δu1,i]− . . .

J∑
j=2

(
bJ−j+1

IS
i=1

[u(sj,i) + δuj,i]−
bJ−j+1

IS
i=1

[
u(sj−1,b (i−1)+1) + δuj−1, b (i−1)+1

])∥∥∥∥∥∥
L2(Ω×S1)

where u(s) is a shorthand notation for u(·, ·, s). Since sj,i = sj,b (i−1)+1, the u in the sum
cancel, and the remaining terms can be rearranged to

‖u− u′‖L2(Ω×S1) ≤
∥∥∥∥∥u− bJ

IS
i=1

u(s1,i)

∥∥∥∥∥
L2(Ω×S1)

+ . . .

J−1∑
j=1

∥∥∥∥∥bJ−j+1

IS
i=1

δuj,i −
bJ−j

IS
i=1

δuj,b (i−1)+1

∥∥∥∥∥
L2(Ω×S1)

+

∥∥∥∥ b
IS
i=1

δuJ,i

∥∥∥∥
L2(Ω×S1)

≤
∥∥∥∥∥u− bJ

IS
i=1

u(s1,i)

∥∥∥∥∥
L2(Ω×S1)

+
J−1∑
j=1

∥∥∥∥∥δuj − bJ−j+1

IS
i=1

δuj,i

∥∥∥∥∥
L2(Ω×S1)

+ . . .

J−1∑
j=1

∥∥∥∥∥δuj − bJ−j

IS
i=1

δuj,b (i−1)+1

∥∥∥∥∥
L2(Ω×S1)

+

∥∥∥∥ b
IS
i=1

δuJ,i

∥∥∥∥
L2(Ω×S1)

Inserting the known convergence rates for linear interpolation and the basic RTE solver,
and estimating the sums by their largest term, we get

‖u− u′‖L2(Ω×S1) = O
(
b−2J

)
+
J−1∑
j=1

O
(
b−2(J−j+1)

)
O
(

2−j(k−1)
)

+ . . .

J−1∑
j=1

O
(
b−2(J−j)

)
O
(

2−j(k−1)
)

+O
(

2−J(k−1)
)

= O
(
J
(
b−2J + 2−J(k−1)

))
Note that for this estimate to work, we have to assume the solution u and the error
functions δuj to be at least C2 in s. Compared to the convergence estimate for the DOM
which only required u ∈ C2(S1), we thus have one additional smoothness assumption for
the SDOM. Since we know only very little about the structure of the error functions,
it is not a priori clear whether they exhibit the required smoothness properties even in
the case when the solution u does. We will come back to this issue when discussing
numerical findings in Section 6.4.

The following complexity estimate is nothing but a reformulation of [8, Lemma 3.1].

43

Theorem 5.4.1 (Complexity of SDOM). The number of degrees of freedoms in the
SDOM is O

(
Jδb,4 max{b, 4}J

)
.

Proof. Simply sum the numbers of degrees of freedom of the uj,i:

J∑
j=1

bJ−j+1O(4j) = O

bJ+1
J∑
j=1

(
4

b

)j
If we assume b 6= 4, we can continue with

O

bJ+1
J∑
j=1

(
4

b

)j = O

(
4J+1 − bJ+1

4− b

)
= O

(
max{b, 4}J

)
Otherwise, we get

O

bJ+1
J∑
j=1

(
4

b

)j = O
(
J 4J

)

Thus, if we assume the above convergence estimate to be correct, we see that the
SDOM achieves a speedup of

O
(
J
δb,4 max{b,4}J

)
O(J(b−2J+2−J(k−1)))

O((4b)J)

O(b−2J+2−J(k−1))

= O

(
min{b, 4}J
J1+δb,4

)
as compared to the DOM.

5.5 Source Iterations

Finally, we are able to tackle the complete RTE including the scattering term:

s · ∇u+ κu = f +

∫
S1

σu ds′

This problem can be solved using the source iteration method, which is:

• Set u′(0)(x, y, s) = 0.

• For t = 1, ..., T , solve

s · ∇u′(t) + κu′(t) = f +

∫
S1

σu′(t−1) ds′

using e.g. the DOM or SDOM based on the basic ridgelet RTE solver.

Obviously, the idea of the source iterations is that the u(t) will converge to the true
solution u for large enough t. We are not aware of any mathematical results proving this
convergence or giving some estimates on the speed of convergence, but the numerical
findings presented in Section 6.5 will show that this method works fairly well.

44

6 Numerical Experiments

Some parameters of the previously developed theory remain constant throughout this
chapter. In order to avoid repeating them over and over again, we introduce them here:

• The real space domain is the unit square Ω = [0, 1]2 (i.e. Lx = Ly = 1)

• Square frames with Jx = Jy = J , ρx = ρy = 1 and square finite Fourier spaces
with Nx = Ny = N are used.

• The radial and spherical shape functions for the ridgelets are

ψRadial(x) = sin
(π

2
v(x)

)
ψSpherical(x) =

√
v(1− x)

with the helper polynomial v : [0, 1]→ [0, 1] given by

v(x) := 35x4 − 84x5 + 70x6 − 20x7

This choice is very similar to the one made in [2], which in turn took the polynomial
v from [3].

• Since three-dimensional functions are difficult to visualize, we will only look at the
incident radiation

G[u](x, y) :=

∫
S1

u(x, y, s) ds

when solving the multi-directional RTE. Note that both the DOM and SDOM
produce solutions which are piecewise linear in s, therefore we can compute the
above integral exactly for these functions.

6.1 Convergence Of CG

The speed of the basic solver presented in Section 5.1 depends crucially on how fast the
CG iterations converge. Therefore, we investigate the convergence of this method when
applied to equations (5.1) and (5.1).

From theory we know that the error ek := ‖xk − A−1b‖ in the k-th CG iterand xk
decays with O(ρkCG) where the error reduction constant ρCG is given by

ρCG =

√
κCG − 1√
κCG + 1

45

(a) ϕ = 0 (b) ϕ = π
4

(c) ϕ = 0.01 (d) ϕ = π
4 − 0.01

(e) ϕ = 0.1 (f) ϕ = π
4 − 0.1

Figure 6.1: Convergence of CG applied to the Fourier space RTE (5.1) using N = 64,
s = (cos(φ), sin(φ))T , κ = 1 and f(x, y) = e−100((x−0.5)2+(y−0.5)2). The con-
dition number is bounded by 1 + 4π2 ≈ 40.5 which gives an expected rate of
convergence of ρCG ≈ 0.73.

46

(a) ϕ = 0 (b) ϕ = π
4

(c) ϕ = 0.01 (d) ϕ = π
4 − 0.01

(e) ϕ = 0.1 (f) ϕ = π
4 − 0.1

Figure 6.2: Convergence of CG applied to the ridgelet space RTE (5.1) using J = 4,
s = (cos(φ), sin(φ))T , κ = 1 and f(x, y) = e−100((x−0.5)2+(y−0.5)2).

47

Figure 6.3: Eigenvalues of DTfs ◦ Tfs∗ ◦ Tfs ◦ DTfs for Nx = Ny = 64, κ = 1 and s =
(cos(φ), sin(φ))T .

(κCG denotes the condition number κCG := ‖A‖‖A−1‖.) In the case of constant absorp-
tion coefficient κ, the operator used in the Fourier space RTE (5.1) becomes diagonal
and can be analytically computed.

(DTfs ◦ Tfs∗ ◦ Tfs ◦ DTfs) [f̂](x̂, ŷ) = d (α(x̂, ŷ)) f̂(x̂, ŷ)

with α(x̂, ŷ) := s · (x̂, ŷ)T , d(α) :=
(2πα)2 + κ2

(1 + |α|)2

Therefore, also bounds for the condition number can be analytically computed.

κCG ≤
max
α∈R

d(α)

min
α∈R

d(α)
= 1 + max

{
κ2

4π2
,
4π2

κ2

}

The ridgelet preconditioner (5.1) can be viewed as a coarser version of the Fourier one
(5.1), thus one expects the condition number for the ridgelet RTE (5.1) to be worse but
similar to the one shown above.

In conclusion, the above theory tells us that the rate of convergence of the CG method
depends on the absorption coefficient κ, which is what we observe in practice. However,
Figures 6.1 and 6.2 show that the rate of convergence also depends heavily on the
transport direction s: If we transport along the axes or diagonals, the convergence rate
is much faster than what theory predicts, while otherwise the theoretical bound is quite
sharp (often even sharper than what is shown in Figure 6.1). A possible explanation for
this behaviour could be the clustering of eigenvalues: CG is known to converge much
faster if the eigenvalues of the coefficient matrix are clustered around some few points
[9]. In our case, this situation occurs if we let e.g. s = (1, 0)T , because then all Fourier
space points with same x̂ lead to the same eigenvalue d(x̂). On the other hand, if the
greatest common divisor of sx and sy is very small (or even inexistent), α attains a lot
more values and so the eigenvalues are scattered over the entire range. Figure 6.3 nicely
shows this for the operators encountered in Figure 6.1.

48

6.2 Convergence Of Basic RTE Solver

We tested the convergence theory from Section 5.2 with the following scheme:

• Fix κ and s to some constant value (κ = 8 and s = (1, 0)T in our case)

• Construct a polynomial solution u with known smoothness Hk across the boundary
of [0, 1]2

• Compute f for the chosen values of κ, s and u.

• Estimate the convergence rate ρ such that the error of the ridgelet based RTE
solver is approximately O

(
ρJ
)

for J = 0, ..., 5

In this way, we obtained the following convergence rates:

k 2 3 4 5

ρ 0.53 0.25 0.086 0.058

The ρ for k = 2, 3, 5 agree with the predicted ρ = 2−(k−1) with reasonable accuracy.
The convergence rate for k = 4 is actually closer to the one predicted for k = 4.5
(2−(4.5−1) ≈ 0.088). The reason for this deviation is unclear, yet it does not contradict
our theoretical findings and the result for k = 5 shows that there is no systematic
deviation.

Figure 6.4 gives further examples of convergence rates. In particular, Figure 6.4b shows
that the magnitude of the jump in one of the derivatives influences the convergence rate
as well: If we increase the jump in κ, the kink in u at x = 0.4 becomes more pronounced
and the convergence rates approaches ρ = 0.5. If the kink in u is only small, however,
the convergence rate can be significantly better.

6.3 General Dirichlet Boundary Conditions

Assuming that κ and f are constant in the transport direction s, it is easily checked that
the solution of the mono-directional RTE

s · u+ κu = f

is given by

u(x, y) = A(x, y) e−κ s·(x,y)T +
f

κ
(6.3.1)

where A(x, y) is a function determined by the boundary conditions which may only
vary in the direction orthogonal to s. This result can be used to generalize the basic
RTE solvers from Section 5.1 which require periodic boundaries to arbitrary Dirichlet
boundary conditions as follows.

Assume we want to impose Dirichlet boundary conditions

u(x, y) = Γ(x, y)

49

(a) s = (1, 0)T , κ = 8, f(x, y) = e−300 ((x−0.3)2+(y−0.5)2)

(b) s = (1, 0)T , κ =

{
4 x ≤ 0.4

10 otherwise
, f(x, y) = e−300 (x−0.3)2−50 (y−0.5)2

Figure 6.4: (Continued on next page)

50

(c) s = 1√
2
(1, 1)T , κ = 8, f(x, y) =

{
1 |x− 0.3| < 0.1 ∧ |y − 0.3| < 0.1

0 otherwise

(d) s = (1, 0)T , κ = 8, f(x, y) =

{
1 |x− 0.3| < 0.1 ∧ |y − 0.5| < 0.1

0 otherwise

Figure 6.4: Convergence of the ridgelet based basic method as a function of the frame
size J . The error was computed as the difference in Fourier space norm to
the “exact” solution obtained with J = 6, which is shown in real space on the
left. CG iterations were aborted once either the relative residual (measured
in ridgelet coefficient space) dropped below 10−8 or 100 iteration steps were
executed.

51

(a) Periodic boundaries on [0, 1]2 (b) Homogeneous boundaries on [0, 0.8]2

Figure 6.5: Imposing homogeneous boundary conditions by increasing κ near the bound-
aries. In both plots,

f(x, y) = e−300 ((x−0.2)2+(y−0.4)2)

On the left, κ(x, y) = 1, whereas on the right

κ(x, y) =

{
1 x ≤ 0.8 ∧ y ≤ 0.8

30 otherwise

52

(a) Nonhomogenous boundaries on [0, l]2 (b) Plot of the f used in (a)

(c) Comparison between the effective boundary conditions and the desired ones. In the above
plot, the negative half axis shows the cross section along the line from (0, l) to (l, l), and the
positive half axis from (l, l) to (l, 0). The blue line shows the effective value of u, the dashed
line the boundary conditions we wanted to impose.

Figure 6.6: Imposing nonhomogeneous boundary conditions by choosing suitable values
for κ and f near the boundaries. s ≈ (−0.37,−0.93)T , i.e. the radiation is
transported from top right to down left. The expression for f is complicated,
but the resulting function is shown in (b).

κ(x, y) =

{
8 x ≤ l ∧ y ≤ l
40 otherwise

with l ≈ 0.8047. l was chosen such that the inflow boundary lies on a grid
point of the ft.

53

(a) Nonsmooth boundary (b) Smooth boundary

(c) Plot of the κ used in (a) (d) Plot of the κ used in (b)

Figure 6.7: Imposing homogeneous boundary conditions using a smooth boundary. In
(a) and (b),

f(x, y) = e−2000 (x−0.4)6−100 (y−0.2)2

In (a),

κ(x, y) =

{
1 x ≤ 0.8 ∧ y ≤ 0.8

30 otherwise

whereas in (b)

κ(x, y) = 1 + 79 e−(3
5

log(e−50 |x−0.9|+e−50 |y−0.9|))
2

54

on the inflow boundary of ΩDirichlet := [0, l]2 where l ∈ (0, 1). In order to do so, we run
the basic solvers on the larger domain Ω := [0, 1]2. On the newly added ΩBoundary :=
Ω \ ΩDirichlet, we set κ |ΩBoundary to some (large) constant κBoundary, whereas

f(x, y) := κBoundary Γ(x+ t sx, y + t sy)

for (x, y) ∈ ΩBoundary and

t = min

{
t′ ∈ R>0 | (x+ t′ sx mod 1, y + t′ sy mod 1) lies on the

inflow boundary of ΩDirichlet

}
With these choices, we get that u |ΩBoundary is of the same form as (6.3) where only
A(x, y) depends on the value of u on the inflow boundary of ΩBoundary (which is the
same as the outflow boundary of ΩDirichlet). The influence of the radiation leaving
ΩDirichlet is thus reduced by a factor of at least e−κBoundary(1−l) before it enters ΩDirichlet

again. The second term, on the other hand, is simply Γ(x + t sx, y + t sy), so we see
that we can impose the boundary conditions with arbitrary precision by choosing large
enough values for κBoundary. This procedure is illustrated in Figures 6.5 and 6.6.

Of course, more complicated choices of κ |ΩBoundary and f |ΩBoundary are possible. Since
jumps in κ and f limit the smoothness of the solution and thus the convergence of the
method, it would for example be desirable to have them vary more smoothly across the
boundaries of ΩDirichlet. While it is hard to derive a recipe that gives smooth κ and f
for all possible boundary conditions, important special cases like homogeneous boundary
conditions are easy to impose with smooth parameters, see Figure 6.7.

6.4 Convergence Of SDOM Compared To DOM

When deriving the DOM and SDOM, we showed that their convergence estimates differ
only in a logarithmic factor. This theoretical result was put to the test in Figure 6.8.

Figures 6.8a and 6.8b show that the results holds approximately true in the case of
perfectly smooth functions. For nonsmooth solutions (6.8c and 6.8d), the convergence
rate of the SDOM is much worse, however, and Figure 6.10 shows that this method
produces strong nonphysical artifacts.

To the best of our knowledge, the only weakness in the derivation of the convergence
estimate for the SDOM was that we assumed the error functions δuj to be C2 in angle
(remember the discussion in Section 5.4). Thus, it seems reasonable to explain our
observations with deficient smoothness of the error functions in this case.

6.5 Source Iterations

Figure 6.11 shows the solutions of the complete RTE and the convergence of the source
iterations for two different values of σ. We observe exponential convergence in both cases,
but the rate of convergence deteriorates with increasing σ. Since the source iterations
are a fixed-point iteration and σ is proportional to the change in the right hand sides
between consecutive source iteration steps, both findings were to be expected.

55

(a) DOM - smooth (b) SDOM - smooth

(c) DOM - nonsmooth (d) SDOM - nonsmooth

Figure 6.8: Convergence of DOM and SDOM. In all plots, κ = 4. In (a) and (b), the
source term was

f(x, y, ϕ) = e−300 ((x−0.5)2+(y−0.5)2) e−2 min{ϕ,2π−ϕ}

whereas in (c) and (d)

f(x, y, ϕ) = max{0, 1− 6 (|x− 0.5|+ |y − 0.5|)} e−2 min{ϕ,2π−ϕ}

Ns = 4J for the DOM and b = 4 for the SDOM was used. The error was
measured as ‖G[u](x, y)−G[ũ](x, y)‖Ω where ũ denotes the solution obtained
with the indicated parameters and u the reference solution obtained by the
DOM with J = 5.
CG iterations were aborted once either the relative residual (measured in
ridgelet coefficient space) dropped below 10−8 or 100 iteration steps were
executed.

56

(a) DOM

(b) DOM - SDOM

Figure 6.9: Plot of the incident radiation G[u] for κ = 4 and

f(x, y, ϕ) = e−300 ((x−0.5)2+(y−0.5)2) e−2 min{ϕ,2π−ϕ}

(a) shows the incident radiation obtained with the DOM using J = 5 and
Ns = 45. (b) shows the difference between the DOM solution showed in (a)
and the SDOM solution obtained with J = 5 and b = 4.
CG iterations were aborted once either the relative residual (measured in
ridgelet coefficient space) dropped below 10−8 or 100 iteration steps were
executed.

57

(a) DOM

(b) SDOM

Figure 6.10: Plot of the incident radiation G[u] for κ = 4 and

f(x, y, ϕ) = max{0, 1− 6 (|x− 0.5|+ |y − 0.5|)} e−2 min{ϕ,2π−ϕ}

(a) shows the incident radiation obtained with the DOM using J = 5 and
Ns = 45, (b) the SDOM solution with J = 5 and b = 4.
CG iterations were aborted once either the relative residual (measured in
ridgelet coefficient space) dropped below 10−8 or 100 iteration steps were
executed.

58

(a) Solution without scattering

(b) The parameters of the problem.

Figure 6.11: (Continued on next page)

59

(c) Solution with σ = 0.2 after 10 source iteration steps

(d) Solution with σ = 0.5 after 40 source iteration steps

Figure 6.11: (Continued on next page)

60

(e) Convergence for σ = 0.2 (f) Convergence for σ = 0.5

Figure 6.11: Scattering of radiation around an obstacle. Plots (a), (c) and (d) show the
incident radiation for three different value of the scattering coefficient σ. In
(b), the f and κ are illustrated: The red line on the left shows the shape of
the source term

f(x, y, ϕ) = e−500 (x−0.15)2−10 min{ϕ,2π−ϕ}2

for some constant ϕ. The light blue area in the middle represents the
obstacle which corresponds to the second term in

κ(x, y) = 2 + 18 e−2000 (x−0.4)4−1000 (y−0.5)4
+ 98 e−900 (x−0.9)2

The last term in κ, shown in dark blue in (b), was introduced in order to
avoid that radiation flows across the y-boundary (Compare also with Figure
6.7). Plots (e) and (f) show the convergence of the source iterations for the
two nonzero values of σ. The error was measured as the difference to the
solution after 10 (e) or 40 (f) source iteration steps.
We used the SDOM with J = 5 and b = 4 to solve the RTE for each source
iteration step. CG iterations were aborted once either the relative residual
(measured in ridgelet coefficient space) dropped below 10−4 or 100 steps
were executed.

61

7 Conclusion

In this bachelor thesis, we devised and studied a ridgelet discretization of the radiative
transport equation. For that purpose, we constructed a ridgelet frame and showed that
it is large enough to resolve functions without loss of information. We derived and
implemented efficient algorithms for the ridgelet transforms, and we showed how they
can be used to discretize the RTE at various levels of generality. All of the proposed
methods have been successfully tested in numerical experiments, the most important of
which was to show that the ridgelet preconditioner proposed and proven theoretically in
[1] also works in practice.

This is the first such preconditioner, and its existence raises hope that it is possible to
successfully combine the ridgelet discretization with adaptive solvers for linear systems
like (5.1), i.e. solvers which only keep track of the most important instead of all coeffi-
cients. Such solvers have been proposed already ten years ago, see e.g. [10, 11, 12]). It
is a topic of current research by Philipp Grohs and Axel Obermeier to prove the conver-
gence and complexity results from these papers for a ridgelet based adaptive solver for
the RTE.

62

Bibliography

[1] P. Grohs. Ridgelet-type Frame Decompositions for Sobolev Spaces related to linear
Transport. Journal of Fourier Analysis and Applications 18/2 (2012), 309-325.

[2] S. Häuser. Fast Finite Shearlet Transform: a tutorial. University of Kaiserslautern,
2012

[3] Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equa-
tions, volume 22. AMS, Providence, 2001

[4] D. Werner. Funktionalanalysis, 5. Auflage, Springer-Verlag Berlin Heidelberg 2005

[5] G. Easley, D. Labate, W. Lim. Sparse directional image representations using the
discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1),
pp. 25-46 (2008)

[6] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, vol. 37 of Texts in Ap-
plied Mathematics, Springer, New York, 2000.

[7] J. Waldvogel. Towards a General Error Theory of the Trapezoidal Rule. Approxima-
tion and Computation, Springer, 2011

[8] K. Grella, Ch. Schwab. Sparse Discrete Ordinates Method in Radiative Transfer.
Computational Methods in Applied Mathematics, pages 305-326, 2011

[9] O. Axelson, G. Lindskog. On the rate of convergence of the preconditioned conjugate
gradient method. Numerische Mathematik, volume 48, pages 499-523, 1986

[10] R. Stevenson. Adaptive solution of operator equations using wavelet frames. SIAM
J. Numer. Anal., 41(3):1074–1100, 2003. MR2005196 (2004e:42062)

[11] A.Cohen, W. Dahmen, R. DeVore. Adaptive wavelet methods for elliptic operator
equations - convergence rates. Math. Comp. 70 (2001), 27-75

[12] A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, K. Urban.
Adaptive wavelet schemes for elliptic problems - implementation and numerical ex-
periments. IGPM Report # 173, RWTH Aachen, June 1999

63

	Introduction
	Radiative Transport Equation
	Ridgelets

	Preliminaries
	Discrete intervals
	Sobolev spaces
	Fourier Transform
	Finite Fourier Transform

	Ridgelets
	Construction
	Ridgelet Transform
	Finite Ridgelet Transform

	Intermezzo: Scalar Products
	Definitions
	Relations

	Radiative Transport Equation
	Basic RTE Solver
	Convergence Of Basic RTE Solver
	Discrete Ordinates Method
	Sparse Discrete Ordinates Method
	Source Iterations

	Numerical Experiments
	Convergence Of CG
	Convergence Of Basic RTE Solver
	General Dirichlet Boundary Conditions
	Convergence Of SDOM Compared To DOM
	Source Iterations

	Conclusion

