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Introduction

Mathematician’s style goals

I Precise.

I Concise.

I General.

The tensor network notation dilemma

I Tensor trains: precise & concise, but not general.

I Hierarchical Tucker: general, but not precise or concise.
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Furthermore

I Even hierarchical Tucker not really general:
Requires rooted binary tree, free modes only in leaves.

I Even tensor trains not really precise and concise:

x(i1, . . . , id) =
∑
α1

. . .
∑
αd−1

x1(i1, α1) x2(α1, i2, α2) . . . xd(αd−1, id).

I Coding is hard:

x = x[1]

n = n[1]

for k = 2:d

x = reshape(x, (n,r[k])) *

reshape(x[k], (r[k],n[k]*r[k+1]))

n *= n[k]

end
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Example

I Scientist counting fraction of species with particular features.

I Natural representation: p(#extremities = x ,#eyes = y , . . .)

I Tensor representation: p(i1, . . . , id)

Example

I Consider two tensors A ∈ R4×5×6, B ∈ R5×7×8.

I Only way to contract: 2nd mode of A with 1st mode of B.

I Order of modes in result follows from mode sizes.

I Hence, C = AB contains same information as

C (a, c , d , e) =
∑
b

A(a, b, c)B(b, d , e).



Labelled Modes Tensors

Generalised tuple
Let D be a finite set and (Ak)k∈D , a family of sets.

I A tuple t ∈×k∈D Ak is a function

t : D →
⋃
k∈D

Ak such that tk ∈ Ak .

I Traditional tuples: D = {1, . . . , n}.

Tensor
A tensor x is a function mapping integer tuples to scalars,

K(D) :=

{
x :×

k∈D
[nk ]→ K

}
, where [nk ] := {1, . . . , nk}.



Labelled Modes Tensors

This construction is natural and intuitive!
Recall example of scientist counting species.

I Data naturally represented as p ∈ R({#extremities,#eyes}).

I We can access elements using

p(i#extremities = 4, i#eyes = 2) = p(i#eyes = 2, i#extremities = 4)



Labelled Modes Tensors

Mode product
Let M,K ,N be mutually disjoint mode sets.
Given two tensors x ∈ K(M ∪ K ), y ∈ K(K ∪ N), their mode
product z := xy is the tensor z ∈ K(M ∪ N) such that

z(iM × iN) =
∑
iK

x(iM × iK ) y(iK × iN).

Example
Recall example of tensor contraction. It now becomes

A ∈ K({a, b, c}), B ∈ K({b, d , e}), AB ∈ K({a, c , d , e})

(AB)(i{a,c} × i{d ,e}) =
∑
ib

A(i{a,c} × i{b})B(i{b} × i{d ,e}).



Tree Tensors
Mode tree
A triplet (V ,E ,D) where (V ,E ) is a tree and D a function
mapping vertices to disjoint mode sets.

{a}
{b}
{c}

{} {d}
{e}

{f , g}

Tree tensor
A tuple of tensors

x ∈×
v∈V

K(E (v) ∪ D(v)).

Contracting the network is trivial:

x =
∏
v∈V

xv .



TreeTensors.jl
Create mode tree and tree tensor:

julia> using Tensors, TreeTensors;

julia> mtree = ModeTree([Mode(:c,2)],

ModeTree([Mode(:a,2)]),

ModeTree([Mode(:b,2)]),

ModeTree([Mode(:d,2)],

ModeTree([Mode(:e,2)]),

ModeTree([Mode(:f,2)]),

)

);

julia> x = rand(mtree,2);

{a} {b}

{c}

{d}

{e} {f }

Contract network:

julia> prod(values(x.tensors)) # Lacks order

Tensor{Float64}([#= Modes :a,:b,:d,:c,:f,:e =#])

julia> contract(x) # Contract leaves-to-root

Tensor{Float64}([#= Modes :c,:a,:b,:f,:d,:e =#])



Conclusion

Labelled Modes (personal review)

I No notational blinkers.

I Shorter and more expressive formulae.

I Easy and bulletproof coding.

Try it yourself, it’s free!



Conclusion

Material

I Slides: homepages.warwick.ac.uk/student/S.Etter/

I Tensors and TreeTensors packages:
github.com/ettersi

I Publication:
S. Etter, Parallel ALS Algorithm for Solving Linear Systems in
the Hierarchical Tucker Representation, SIAM Journal on
Scientific Computing
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Mode Tags

Mode tag
A symbol t such that t(k) introduces a new mode based on k .

Row and Column mode tags
Tags R and C with special multiplication rules.

I R(k) only multiplies k and C (k) appearing on the left.

I C (k) only multiplies k and R(k) appearing on the right.

I If multiplication produces unpaired R(k)/C (k), rename to k.

Write D2 := R(D) ∪ C (D).

Example

I Operator A ∈ K(D2), vector x ∈ K(D).

I Without last rule: Ax ∈ K(R(D)).

I With last rule: Ax ∈ K(D).



Orthogonalisation

Maths paraphrased from [Ose11]

for k = 1 to d − 1 do
[q(βk ik ;βk+1), r(βk+1, αk+1)] := QR(xk(βk ik ;αk+1))
xk = q
xk+1 := r ×1 xk+1

end for

Maths in labelled modes notation

for edge v − p in leaves-to-root order do
(q, r) := QRv−p(xv )

q ∈ K(D(v) ∪ E (v))
r ∈ K({v − p}2)

xv := q
xp := r xp

end for

[Ose11] I. V. Oseledets. Tensor Train Decomposition. SIAM Journal on
Scientific Computing (2011)



Orthogonalisation

Code

for (v,p) in edges(x, leaves_to_root)

(q,r) = qr(x[v], PairSet(v,p))

x[v] = q

x[p] = r*x[p]

end



Truncation

Maths

for vertex v in root-to-leaves order do
for child c of v do

(b, sv−c , d) = SVDv−c(xv )
xv = b diag(sv−c)
xc = diag(sv−c) d xc
Truncate sv−c

end for
Truncate xv
for child c of v do

xv = diag(s−1v−c) xv
end for

end for



Truncation

Code

s = Dict{PairSet{Tree}, Tensor{real(scalartype(x))}}()

for (v,p) in edges_with_root(x, root_to_leaves)

for c in children(v,p)

e = PairSet(v,c)

b,s[e],d = svd(x[v], e, maxrank())

x[c] = scale(s[e],d)*x[c]

x[v] = scale(b,s[e])

s[e] = resize(s[e], Dict(e => rank(s[e])))

end

x[v] = resize(x[v],

Dict(e => length(s[e]) for e in neighbor_edges(v)))

x[v] = scale(x[v],

[1./s[e] for e in child_edges(v,p)]...)

end


