Labelled Modes
 A New Notation for Tensor Networks

Simon Etter

University of Warwick
GAMM Annual Meeting
7th March 2017

Introduction

Mathematician's style goals

- Precise.
- Concise.
- General.

The tensor network notation dilemma

- Tensor trains: precise \& concise, but not general.
- Hierarchical Tucker: general, but not precise or concise.

Introduction

Furthermore

- Even hierarchical Tucker not really general: Requires rooted binary tree, free modes only in leaves.
- Even tensor trains not really precise and concise:

$$
x\left(i_{1}, \ldots, i_{d}\right)=\sum_{\alpha_{1}} \ldots \sum_{\alpha_{d-1}} x_{1}\left(i_{1}, \alpha_{1}\right) x_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) \ldots x_{d}\left(\alpha_{d-1}, i_{d}\right)
$$

- Coding is hard:

$$
\begin{aligned}
\mathrm{x}= & \mathrm{x}[1] \\
\mathrm{n}= & \mathrm{n}[1]
\end{aligned} \quad \begin{array}{rl}
\text { for } \mathrm{k}= & 2: \mathrm{d} \\
\mathrm{x}= & \mathrm{reshape}(\mathrm{x}, \quad(\mathrm{n}, \mathrm{r}[\mathrm{k}])) * \\
& \quad \operatorname{reshape}(\mathrm{x}[\mathrm{k}], \quad(\mathrm{r}[\mathrm{k}], \mathrm{n}[\mathrm{k}] * \mathrm{r}[\mathrm{k}+1])) \\
\mathrm{n} * & \mathrm{n}[\mathrm{k}]
\end{array}
$$

Introduction

Example

- Scientist counting fraction of species with particular features.
- Natural representation: $p(\#$ extremities $=x, \#$ eyes $=y, \ldots$)
- Tensor representation: $p\left(i_{1}, \ldots, i_{d}\right)$

Example

- Consider two tensors $A \in \mathbb{R}^{4 \times 5 \times 6}, B \in \mathbb{R}^{5 \times 7 \times 8}$.
- Only way to contract: 2 nd mode of A with 1 st mode of B.
- Order of modes in result follows from mode sizes.
- Hence, $C=A B$ contains same information as

$$
C(a, c, d, e)=\sum_{b} A(a, b, c) B(b, d, e) .
$$

Labelled Modes Tensors

Generalised tuple

Let D be a finite set and $\left(A_{k}\right)_{k \in D}$, a family of sets.

- A tuple $t \in X_{k \in D} A_{k}$ is a function

$$
t: D \rightarrow \bigcup_{k \in D} A_{k} \text { such that } t_{k} \in A_{k}
$$

- Traditional tuples: $D=\{1, \ldots, n\}$.

Tensor

A tensor x is a function mapping integer tuples to scalars,

$$
\mathbb{K}(D):=\left\{x: \underset{k \in D}{X}\left[n_{k}\right] \rightarrow \mathbb{K}\right\}, \quad \text { where } \quad\left[n_{k}\right]:=\left\{1, \ldots, n_{k}\right\}
$$

Labelled Modes Tensors

This construction is natural and intuitive!

Recall example of scientist counting species.

- Data naturally represented as $p \in \mathbb{R}(\{\#$ extremities, \#eyes $\})$.
- We can access elements using

$$
p\left(i_{\# \text { extremities }}=4, i_{\# \text { eyes }}=2\right)=p\left(i_{\# \text { eyes }}=2, i_{\# \text { extremities }}=4\right)
$$

Labelled Modes Tensors

Mode product

Let M, K, N be mutually disjoint mode sets.
Given two tensors $x \in \mathbb{K}(M \cup K), y \in \mathbb{K}(K \cup N)$, their mode product $z:=x y$ is the tensor $z \in \mathbb{K}(M \cup N)$ such that

$$
z\left(i_{M} \times i_{N}\right)=\sum_{i_{K}} x\left(i_{M} \times i_{K}\right) y\left(i_{K} \times i_{N}\right)
$$

Example

Recall example of tensor contraction. It now becomes

$$
\begin{gathered}
A \in \mathbb{K}(\{a, b, c\}), \quad B \in \mathbb{K}(\{b, d, e\}), \quad A B \in \mathbb{K}(\{a, c, d, e\}) \\
(A B)\left(i_{\{a, c\}} \times i_{\{d, e\}}\right)=\sum_{i_{b}} A\left(i_{\{a, c\}} \times i_{\{b\}}\right) B\left(i_{\{b\}} \times i_{\{d, e\}}\right)
\end{gathered}
$$

Tree Tensors

Mode tree
A triplet (V, E, D) where (V, E) is a tree and D a function mapping vertices to disjoint mode sets.

$$
\underset{\{c\}}{\{a\}} \underset{\{b\}}{\substack{\{c \mid}}\left\{\begin{array}{c}
\{d, g\}
\end{array}\right.
$$

Tree tensor

A tuple of tensors

$$
x \in \underset{v \in V}{X} \mathbb{K}(E(v) \cup D(v))
$$

Contracting the network is trivial:

$$
x=\prod_{v \in V} x_{v}
$$

TreeTensors.j

Create mode tree and tree tensor:

```
julia> using Tensors, TreeTensors;
julia> mtree = ModeTree([Mode(:c,2)],
    ModeTree([Mode(:a,2)]),
    ModeTree([Mode(:b,2)]),
    ModeTree([Mode(:d,2)],
        ModeTree([Mode(:e,2)]),
        ModeTree([Mode(:f,2)]),
    )
```

```
    );
```

);
 julia> x = rand(mtree,2);

```
julia> x = rand(mtree,2);
```


Contract network:

```
julia> prod(values(x.tensors)) # Lacks order
Tensor{Float64}([#= Modes :a,:b,:d,:c,:f,:e =#])
julia> contract(x) # Contract leaves-to-root
Tensor{Float64}([#= Modes :c,:a,:b,:f,:d,:e =#])
```


Conclusion

Labelled Modes (personal review)

- No notational blinkers.
- Shorter and more expressive formulae.
- Easy and bulletproof coding.

Try it yourself, it's free!

Conclusion

Material

- Slides: homepages.warwick.ac.uk/student/S.Etter/
- Tensors and TreeTensors packages: github.com/ettersi
- Publication:
S. Etter, Parallel ALS Algorithm for Solving Linear Systems in the Hierarchical Tucker Representation, SIAM Journal on Scientific Computing

Acknowledgements

Thanks to Vladimir Kazeev, Robert Gantner, Christoph Schwab and Christoph Ortner for their help with this work!

Mode Tags

Mode tag

A symbol t such that $t(k)$ introduces a new mode based on k.
Row and Column mode tags
Tags R and C with special multiplication rules.

- $R(k)$ only multiplies k and $C(k)$ appearing on the left.
- $C(k)$ only multiplies k and $R(k)$ appearing on the right.
- If multiplication produces unpaired $R(k) / C(k)$, rename to k.

Write $D^{2}:=R(D) \cup C(D)$.

Example

- Operator $A \in \mathbb{K}\left(D^{2}\right)$, vector $x \in \mathbb{K}(D)$.
- Without last rule: $A x \in \mathbb{K}(R(D))$.
- With last rule: $\quad A x \in \mathbb{K}(D)$.

Orthogonalisation

Maths paraphrased from [Ose11]

for $k=1$ to $d-1$ do

$$
\begin{aligned}
& \qquad\left[q\left(\beta_{k} i_{k} ; \beta_{k+1}\right), r\left(\beta_{k+1}, \alpha_{k+1}\right)\right]:=\mathrm{QR}\left(x_{k}\left(\beta_{k} i_{k} ; \alpha_{k+1}\right)\right) \\
& \quad x_{k}=q \\
& \quad x_{k+1}:=r \times_{1} x_{k+1} \\
& \text { end for }
\end{aligned}
$$

Maths in labelled modes notation
for edge $v-p$ in leaves-to-root order do

$$
\begin{aligned}
& \quad(q, r):=\mathrm{QR}_{v-p}\left(x_{v}\right) \\
& \quad x_{v}:=q \\
& x_{p}:=r x_{p} \\
& \text { end for }
\end{aligned}
$$

[Ose11] I. V. Oseledets. Tensor Train Decomposition. SIAM Journal on Scientific Computing (2011)

Orthogonalisation

Code

```
for (v,p) in edges(x, leaves_to_root)
    (q,r) = qr (x[v], PairSet (v,p))
    x[v] = q
    x[p] = r*x[p]
end
```


Truncation

Maths

for vertex v in root-to-leaves order do
for child c of v do

$$
\begin{aligned}
& \left(b, s_{v-c}, d\right)=\operatorname{SVD}_{v-c}\left(x_{v}\right) \\
& x_{v}=b \operatorname{diag}\left(s_{v-c}\right) \\
& x_{c}=\operatorname{diag}\left(s_{v-c}\right) d x_{c}
\end{aligned}
$$

$$
\text { Truncate } s_{v-c}
$$

end for
Truncate x_{v}
for child c of v do

$$
x_{v}=\operatorname{diag}\left(s_{v-c}^{-1}\right) x_{v}
$$

end for
end for

Truncation

Code

```
s = Dict{PairSet{Tree}, Tensor{real(scalartype(x))}}()
for (v,p) in edges_with_root(x, root_to_leaves)
    for c in children(v,p)
            e = PairSet(v,c)
            b,s[e],d = svd(x[v], e, maxrank())
            x[c] = scale(s[e],d)*x[c]
            x[v] = scale(b,s[e])
            s[e] = resize(s[e], Dict(e => rank(s[e])))
    end
    x[v] = resize(x[v],
            Dict(e => length(s[e]) for e in neighbor_edges(v)))
    x[v] = scale(x[v],
            [1./s[e] for e in child_edges(v,p)]...)
end
```

