
Labelled Modes
A New Notation for Tensor Networks

Simon Etter

University of Warwick

GAMM Annual Meeting
7th March 2017



Introduction

Mathematician’s style goals

I Precise.

I Concise.

I General.

The tensor network notation dilemma

I Tensor trains: precise & concise, but not general.

I Hierarchical Tucker: general, but not precise or concise.



Introduction

Furthermore

I Even hierarchical Tucker not really general:
Requires rooted binary tree, free modes only in leaves.

I Even tensor trains not really precise and concise:

x(i1, . . . , id) =
∑
α1

. . .
∑
αd−1

x1(i1, α1) x2(α1, i2, α2) . . . xd(αd−1, id).

I Coding is hard:

x = x[1]

n = n[1]

for k = 2:d

x = reshape(x, (n,r[k])) *

reshape(x[k], (r[k],n[k]*r[k+1]))

n *= n[k]

end



Introduction

Example

I Scientist counting fraction of species with particular features.

I Natural representation: p(#extremities = x ,#eyes = y , . . .)

I Tensor representation: p(i1, . . . , id)

Example

I Consider two tensors A ∈ R4×5×6, B ∈ R5×7×8.

I Only way to contract: 2nd mode of A with 1st mode of B.

I Order of modes in result follows from mode sizes.

I Hence, C = AB contains same information as

C (a, c , d , e) =
∑
b

A(a, b, c)B(b, d , e).



Labelled Modes Tensors

Generalised tuple
Let D be a finite set and (Ak)k∈D , a family of sets.

I A tuple t ∈×k∈D Ak is a function

t : D →
⋃
k∈D

Ak such that tk ∈ Ak .

I Traditional tuples: D = {1, . . . , n}.

Tensor
A tensor x is a function mapping integer tuples to scalars,

K(D) :=

{
x :×

k∈D
[nk ]→ K

}
, where [nk ] := {1, . . . , nk}.



Labelled Modes Tensors

This construction is natural and intuitive!
Recall example of scientist counting species.

I Data naturally represented as p ∈ R({#extremities,#eyes}).

I We can access elements using

p(i#extremities = 4, i#eyes = 2) = p(i#eyes = 2, i#extremities = 4)



Labelled Modes Tensors

Mode product
Let M,K ,N be mutually disjoint mode sets.
Given two tensors x ∈ K(M ∪ K ), y ∈ K(K ∪ N), their mode
product z := xy is the tensor z ∈ K(M ∪ N) such that

z(iM × iN) =
∑
iK

x(iM × iK ) y(iK × iN).

Example
Recall example of tensor contraction. It now becomes

A ∈ K({a, b, c}), B ∈ K({b, d , e}), AB ∈ K({a, c , d , e})

(AB)(i{a,c} × i{d ,e}) =
∑
ib

A(i{a,c} × i{b})B(i{b} × i{d ,e}).



Tree Tensors
Mode tree
A triplet (V ,E ,D) where (V ,E ) is a tree and D a function
mapping vertices to disjoint mode sets.

{a}
{b}
{c}

{} {d}
{e}

{f , g}

Tree tensor
A tuple of tensors

x ∈×
v∈V

K(E (v) ∪ D(v)).

Contracting the network is trivial:

x =
∏
v∈V

xv .



TreeTensors.jl
Create mode tree and tree tensor:

julia> using Tensors, TreeTensors;

julia> mtree = ModeTree([Mode(:c,2)],

ModeTree([Mode(:a,2)]),

ModeTree([Mode(:b,2)]),

ModeTree([Mode(:d,2)],

ModeTree([Mode(:e,2)]),

ModeTree([Mode(:f,2)]),

)

);

julia> x = rand(mtree,2);

{a} {b}

{c}

{d}

{e} {f }

Contract network:

julia> prod(values(x.tensors)) # Lacks order

Tensor{Float64}([#= Modes :a,:b,:d,:c,:f,:e =#])

julia> contract(x) # Contract leaves-to-root

Tensor{Float64}([#= Modes :c,:a,:b,:f,:d,:e =#])



Conclusion

Labelled Modes (personal review)

I No notational blinkers.

I Shorter and more expressive formulae.

I Easy and bulletproof coding.

Try it yourself, it’s free!



Conclusion

Material

I Slides: homepages.warwick.ac.uk/student/S.Etter/

I Tensors and TreeTensors packages:
github.com/ettersi

I Publication:
S. Etter, Parallel ALS Algorithm for Solving Linear Systems in
the Hierarchical Tucker Representation, SIAM Journal on
Scientific Computing

Acknowledgements
Thanks to Vladimir Kazeev, Robert Gantner, Christoph Schwab
and Christoph Ortner for their help with this work!

homepages.warwick.ac.uk/student/S.Etter/
github.com/ettersi


Mode Tags

Mode tag
A symbol t such that t(k) introduces a new mode based on k .

Row and Column mode tags
Tags R and C with special multiplication rules.

I R(k) only multiplies k and C (k) appearing on the left.

I C (k) only multiplies k and R(k) appearing on the right.

I If multiplication produces unpaired R(k)/C (k), rename to k.

Write D2 := R(D) ∪ C (D).

Example

I Operator A ∈ K(D2), vector x ∈ K(D).

I Without last rule: Ax ∈ K(R(D)).

I With last rule: Ax ∈ K(D).



Orthogonalisation

Maths paraphrased from [Ose11]

for k = 1 to d − 1 do
[q(βk ik ;βk+1), r(βk+1, αk+1)] := QR(xk(βk ik ;αk+1))
xk = q
xk+1 := r ×1 xk+1

end for

Maths in labelled modes notation

for edge v − p in leaves-to-root order do
(q, r) := QRv−p(xv )

q ∈ K(D(v) ∪ E (v))
r ∈ K({v − p}2)

xv := q
xp := r xp

end for

[Ose11] I. V. Oseledets. Tensor Train Decomposition. SIAM Journal on
Scientific Computing (2011)



Orthogonalisation

Code

for (v,p) in edges(x, leaves_to_root)

(q,r) = qr(x[v], PairSet(v,p))

x[v] = q

x[p] = r*x[p]

end



Truncation

Maths

for vertex v in root-to-leaves order do
for child c of v do

(b, sv−c , d) = SVDv−c(xv )
xv = b diag(sv−c)
xc = diag(sv−c) d xc
Truncate sv−c

end for
Truncate xv
for child c of v do

xv = diag(s−1v−c) xv
end for

end for



Truncation

Code

s = Dict{PairSet{Tree}, Tensor{real(scalartype(x))}}()

for (v,p) in edges_with_root(x, root_to_leaves)

for c in children(v,p)

e = PairSet(v,c)

b,s[e],d = svd(x[v], e, maxrank())

x[c] = scale(s[e],d)*x[c]

x[v] = scale(b,s[e])

s[e] = resize(s[e], Dict(e => rank(s[e])))

end

x[v] = resize(x[v],

Dict(e => length(s[e]) for e in neighbor_edges(v)))

x[v] = scale(x[v],

[1./s[e] for e in child_edges(v,p)]...)

end


