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Exponential Localisation

Definition. An infinite matrix A ∈ L(`2(Zd)) is called exponentially localised with
rate γ > 0 if it satisfies the following three equivalent properties:

1. For each γ̃ ∈ [0, γ) there exists a C > 0 such that

|A(i , j)| ≤ C exp(−γ̃ |i − j |) ∀i , j ∈ Zd .

2. For each diverging sequence sn ∈ Zd we have, uniformly for all i ∈ Zd ,

lim sup
n→∞

|A(i , i + sn)|1/|sn| ≤ exp(−γ).

3. For each ~γ ∈ Rd , |~γ| < γ, and p ∈ [0,∞], it holds ‖D~γAD−1
~γ ‖p is finite,

where D~γ ∈ L(`2(Rd)) is defined through (D~γ x)(i) = exp(~γ · i) x(i).

The set of all such matrices is denoted by Loc(γ).
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Characterisation 3

Product of Exponentially Localised Matrices

Theorem.

A ∈ Loc(γA), B ∈ Loc(γB) =⇒ AB ∈ Loc(min{γA, γB}).

Proof. For any ~γAB ∈ Rd with |~γAB| < min{γA, γB}, we have

‖D~γABABD−1
~γAB
‖p ≤ ‖D~γABAD−1

~γAB
‖p ‖D~γABBD−1

~γAB
‖p ≤ C .

This theorem would not hold if we had defined exponential localisation as

Loc ′(γ) := {A ∈ L(`2(Zd)) | ∃C > 0 : |A(i , j)| ≤ C exp(−γ |i − j |)}.
This is easy to see in one dimension. Assume A, B ∈ Loc ′(γ) and i < j . Then,

|(AB)(i , j)| ≤ C
∞∑

k=−∞
exp
(
− γ (|i − k| + |k − j |)

)

= C

 j∑
k=i

exp
(
− γ (j − i)

)
+
∑

k=−∞,...,i−1,
j+1,...,∞

exp
(
− γ |2k − i − j |

)
= C

(
1 + |i − j | + 2

exp(2γ)− 1

)
exp
(
− γ |i − j |

)
.

−20 −10 0 10 20
k

0.0

0.1

0.2

0.3

0.4

ex
p

(
−
γ

(|i
−

k
|+
|k
−

j|)
)

Applications

Linear Scaling Algorithms

The above definition of exponential localisation for infinite matrices A ∈ L(`2(Zd))
can be adapted to sequences of finite-size matrices An ∈ Cn×n by requiring that
the parameters and bounds in the definition are independent of n. If a matrix
A ∈ Cn×n is localised in this sense, we can approximate it by a banded matrix and
thereby reduce both the storage complexity as well as the computational costs for
matrix products and factorisations to O(n).

Localisation of Perturbations

Exponential localisation of A ∈ Loc(γ) implies that a perturbation of a vector
x ∈ `2(Zd) at a position i ∈ Zd only has an exponentially small impact on the
entries of Ax far away from i . This is useful in numerical analysis, as it implies for
example convergence of domain truncation methods.

Functions of Exponentially Localised Matrices

Theorem. Let A ∈ Loc(γ), and let f : σ(A) → C be analytic. Then, f (A) ∈
Loc(γ̂) for some γ̂ > 0.

Common examples for f (z) are

f (z) = z−1 or f (z) =

{
1 if z ∈ X ,

0 otherwise,

where X ⊂ C such that ∂X ∩ σ(A) = {}. The latter choice allows to estimate
the localisation of eigenvectors corresponding to isolated eigenvalues.

Neumann Approach [CT73]

The case of general function f (z) can be reduced to the particular case of f (z) =
z−1 using the Cauchy contour integral formula

f (A) =
1

2πι

∮
∂Ω

f (z) (z − A)−1 dz

where Ω ⊂ C is an open set such that σ(A) ⊂ Ω and f can be analytically
extended to Ω.

We thus aim to find γ̂ > 0 such that ‖D~γ A−1 D−1
~γ ‖p < ∞ for all ~γ ∈ Rd with

|~γ| < γ̂. To this end, we will use the following result.

Lemma (Neumann). Let A, B be two operators such that A is boundedly invert-
ible and ‖B − A‖ < ‖A−1‖−1. Then, B is boundedly invertible.

This lemma guarantees ‖D~γ A−1 D−1
~γ ‖p <∞ for all ~γ ∈ Rd , |~γ| < γ̂, if

ap(γ̂) := sup
|~γ|=γ̂
‖A− D~γ A D−1

~γ ‖p < ‖A−1‖−1
p .

Assuming a : R≥0 → R≥0 is bijective, this yields γ̂ = a−1
p (‖A−1‖−1

p ).

We can easily estimate ap(γ̂) for important classes of matrices:

Laplacian-like:

A(i , j) =


ai ∈ C for |i − j | = 0

−1 for |i − j | = 1

0 for |i − j | > 1

=⇒ ap(γ̂) ≤ 2d sinh(γ̂).

Exponential localisation:

|A(i , j)| ≤ C exp(−γ |i − j |) =⇒ ap(γ̂) ≤ Cd sinh(γ̂)

cosh(γ)− cosh(γ̂)
.

Gaussian localisation:

|A(i , j)| ≤ C exp(−γ |i − j |2) =⇒ ap(γ̂) ≤ Cd
√

π
γ erf

(
γ̂

2
√
γ

)
exp
(
γ̂2

4γ

)
.

Polynomial Approximation Approach

This approach only applies to a subset of exponentially localised matrices.

Definition (banded matrix). A matrix A ∈ L(`2(Zd)) is called m-banded if

|i − j | > m =⇒ A(i , j) = 0 ∀i , j ∈ Zd .

The set of all such matrices is denoted by Band(m).

Theorem ([DMS84]). Let A ∈ Band(m) and f : σ(A)→ C. Then,

|f (A)(i , j)| ≤ inf
pk∈Pk

‖f − pk‖∞,σ(A) ∀i , j ∈ Zd , k =
⌊
|i−j |−1

m

⌋
.

Proof. Let pk ∈ Pk , which by the choice of k implies pk(A)(i , j) = 0. Hence

|f (A)(i , j)| ≤ |pk(A)(i , j)| + |f (A)(i , j)− pk(A)(i , j)|
≤ 0 + ‖f (A)− pk(A)‖2

≤ ‖f − pk‖∞,σ(A).

The localisation of f (A) with A ∈ Band(m) is thus determined by how well f can
be approximated using polynomials. We have the following result from logarithmic
potential theory.

Theorem. Let σ ⊂ C be compact such that σc is connected, and let f : σ → C
be analytic. There exists a function g : C→ [0,∞) depending only on σ◦, called
the Green’s function of σc , such that

lim
k→∞

inf
pk∈Pk

‖f − pk‖1/k
∞,σ = exp(−g?)

where

g? := max
{

g̃ > 0 | f can be analytically extended to {z ∈ C|g(z) < g̃}
}

.

Proof. See e.g. [Ran95].

Physically, g(z) corresponds to the electrostatic potential of a metal σ carrying a
unit charge. Examples for (σ, g) pairs are

σ = [−1, 1] =⇒ g(z) = log
(
|z +

√
z2 − 1|

)
,

σ = [a, b] ∪ [c , d ] =⇒ g(z) = Re

(∫ z

a

(s − u) du√
(u − a) (u − b) (u − c) (u − d)

)
.

In the second case, a < b < c < d ∈ R and

s =

∫ c
b

u du√
(u−a) (u−b) (u−c) (u−d)∫ c

b
du√

(u−a) (u−b) (u−c) (u−d)

.

The Green’s function for two intervals was derived in [SSW01].

Numerical Experiments

Laplacian-like Matrix

Let us consider the two matrices A, B ∈ C100×100 with entries

A(i , j) :=


(−1)i if |i − j | = 0,

−1 if |i − j | = 1,

0 if |i − j | > 1,

B(i , j) :=

{
0 if i = j = 1,

A(i , j) otherwise.

and spectra

σ(A) ⊂ [−
√

5,−1] ∪ [1,
√

5], σ(B) ⊂ σ(A) ∪ {0.4142}.
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We observe:

• The localisation rate depends on all of σ(A− z), not just min |σ(A− z)|.
• Isolated points do not affect the localisation rate.

• The polynomial approximation approach yields the exact localisation rate.
In particular, it correctly predicts the previous two points.

• The Neumann bound is reasonably sharp for large ‖A−1‖−1
2 but deteriorates

arbitrarily for ‖A−1‖−1
2 → 0.

Exponentially Localised Matrix

We next consider the matrices A, B ∈ C100×100 with entries

A(i , j) := m exp(−|i − j |) + b δij , B(i , j) :=

{
1.4 if i = j = 1,

A(i , j) otherwise,

where m, b ∈ R are chosen such that

σ(A) ⊂ [−1, 1], −1, 1 ∈ σ(A), σ(B) ⊂ σ(A) ∪ {1.5577}.
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Discussion

The Neumann approach for proving localisation of the inverse applies to any matrix
A ∈ Loc(γ) and mostly estimates the localisation rate with reasonable accuracy.
It gives very wrong results, however, if there is an isolated eigenvalue close to the
origin. It would be useful if the Neumann approach could be adapted to reflect this
fact, or if the polynomial approximation approach could be extended to arbitrary
localised matrices.
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